36 research outputs found
Revue of contingent capital pricing model using growth and barrier option approach with numerical application
This paper investigates the effects of contingent capital, a debt instrument that automatically converts into equity if the value of the asset is below a predetermined threshold on the pricing process of a bank assets’. A traceable form of the contingent convertible bond is analyzed to find a closed-form solution for the price of this bond using barrier and growth options. We examine the interaction between growth options and financing policy in a dynamic business model. The contribution of this paper is to extend Hilscher and Raviv [10] and Tan and Yang [22] research to include the evaluation of all aspects of banks' financial structure, with an emphasis on explicitly calculating the likelihood of the default event. The fundamental theorem of asset pricing and the first passage of time method have been used to generate closed formulas that are amenable to practical analysis. The potential benefits from contingent capital as financing and risk management instrument can be assessed through their contribution to reducing the probability of default. The appropriate choice of contingent capital parameters, the rate, and the conversion threshold can reduce shareholders incentives to change risk
Molecular analysis of HBV genotypes and subgenotypes in the Central-East region of Tunisia
<p>Abstract</p> <p>Background</p> <p>In Tunisia, country of intermediate endemicity for Hepatitis B virus (HBV) infection, most molecular studies on the virus have been carried out in the North of the country and little is known about other regions. The aim of this study was to determine HBV genotype and subgenotypes in Central-East Tunisia. A total of 217 HBs antigen positive patients were enrolled and determination of genotype was investigated in 130 patients with detectable HBV DNA. HBV genotyping methods were: PCR-RFLP on the pre-S region, a PCR using type-specific primers in the S region (TSP-PCR) and partial sequencing in the pre-S region.</p> <p>Results</p> <p>Three genotypes (D, B and A) were detected by the PCR-RFLP method and two (D and A) with the TSP-PCR method, the concordance between the two methods was 93%. Sequencing and phylogenetic analysis of 32 strains, retrieved the same genotype (D and A) for samples with concordant results and genotype D for samples with discordant results. The sequences of discordant genotypes had a restriction site in the pre-S gene which led to erroneous result by the PCR-RFLP method. Thus, prevalence of genotype D and A was 96% and 4%, respectively. Phylogenetic analysis showed the predominance of two subgenotypes D1 (55%) and D7 (41%). Only one strain clustered with D3 subgenotype (3%).</p> <p>Conclusions</p> <p>Predominance of subgenotype D7 appears to occur in northern regions of Africa with transition to subgenotype D1 in the East of the continent. HBV genetic variability may lead to wrong results in rapid genotyping methods and sequence analysis is needed to clarify atypical results.</p
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Dielectric relaxation phenomena in flax fibers composite
International audienceIn this work, a study of the dynamic dielectric analysis of the unidirectional epoxy composite: flax-fibre-reinforced epoxy (FFRE) was investigated. In this composite, three relaxation processes were identified. The first one is the water dipoles polarization imputed to the presence of polar water molecules in flax fiber. The second relaxation process associated with conductivity occurs as a result of the carriers charges diffusion. As for the third dielectric relaxation associated with the interfacial polarization effect is attributable to the accumulation of charges at the fibers/matrix interface. The analysis of the Maxwell-Wagner-Sillars (MWS) and the water dipoles polarizations using the Havriliak-Negami model revealed the high adhesion of flax fibers in the matrix. This analysis was supported by the thermal properties using a Differential Scanning Calorimety (DSC)