10 research outputs found

    Cu‐Oxide Nanoparticles Catalyzed Synthesis of Nitriles and Amides from Alcohols and Ammonia in Presence of Air

    Get PDF
    The synthesis and functionalization of nitrogen-containing compounds continue to be important due to their wide applications. In particular, the preparation of nitriles and amides applying cost-effective and green methodologies is of central importance because these products represent valuable fine and bulk chemicals and serve as key precursors and central intermediates in organic synthesis and drug discovery as well as materials. Here, the preparation of nitriles and primary amides from alcohols and ammonia by a heterogeneous Cu-catalyzed aerobic oxidation process is reported. The optimal catalyst for this synthesis is based on supported copper oxide-nanoparticles, which are prepared by the impregnation and pyrolysis of simple copper nitrate on carbon. Applying these reusable nanoparticles, various simple, substituted, and functionalized aromatic, heterocyclic, and aliphatic nitriles are synthesized starting from inexpensive and easily accessible alcohols and ammonia in the presence of air. In addition, the synthesis of selected primary amides in a water medium is also performed using these Cu nanoparticles. © 2022 The Authors. Advanced Sustainable Systems published by Wiley-VCH GmbH

    Experimental and Theoretical Analysis of Mechanical Properties of Graphite/Polyethylene Terephthalate Nanocomposites

    No full text
    In this work, graphite nanoplatelets (GNP) were incorporated into poly (ethylene terephthalate) (PET) matrix to prepare PET-GNP nanocomposites using a melt compounding followed by compression moulding and then quenching process. Both static and dynamic mechanical properties of these quenched materials were characterized as a function of GNP contents using dynamic mechanical thermal analysis (DMTA) and tensile machine, respectively. The results demonstrated that the addition of GNP improved the stiffness of PET significantly. Additionally, the maximum increase in the storage modulus of 72% at 6 wt.% GNP. The incorporation of GNP beyond 6 wt.% into PET decreases the storage moduli, but they remain higher than pure PET. The observed reduction could be due to agglomeration, resulting in poorer dispersion and distribution of higher levels of GNP into the PET matrix. In contrast to the results for moduli, tensile strength and elongations at break reduce with increasing the GNP content. For example, tensile strength reduced from ∼46 MPa (neat PET) to ∼39 MPa (−15%) for the nanocomposites containing 2 wt.% GNP. This reduction is accompanied by a decline in elongation at break from ∼6.3 (neat PET) to ∼3.4 (−46%) for the same nanocomposites. Such reductions are followed by a gradual decrease in upon further addition of GNP. These reductions indicate that increasing GNP loadings, results in brittleness in nanocomposites. In addition, it was found that quenched PET and composite samples were not fully crystallized after processing and therefore (cold) crystallized during the first heating cycle DMTA, as indicated by a rise in storage moduli above the glass transition temperature during the DMTA first heat. Furthermore, mathematical models based on non-linear theories are developed to capture the experimental data. For this, a set of mechanical stress-strain data is used for model parameters’ identification. Another set of data is used for the model validation that demonstrates good agreements with the experimental study

    Engineering of the crystalline state towards a defective state of CeCoO3 perovskite for the OER process in alkaline medium

    No full text
    Perovskite oxides act as an efficient electrocatalyst, but their limited active surface area has made it challenging to enhance their electrocatalytic activity. Thus, researchers found that changing the crystalline surface to an amorphous surface having oxygen vacancy can create an enriched active zone. In this research, we adopt a top-down approach for the amorphization of the crystalline CeCoO3 nanostructure that creates crystal defects, producing materials with a higher specific surface area, potential electrocatalysis for oxygen evolution reaction (OER) and greater stability. The calculated overpotential (η) and Tafel slope for defective CoCO3 (D-CCO3) is 265 and 35.95 mV dec−1 very low as compared to the crystalline CoCO3 (C-CCO3, 384 and 76.11 mV dec−1). The electrochemical analysis also suggests that the defective CoCO3 (D-CCO) exhibited the 33.96 mF and ECSA of 849 cm2. The current research enables a valuable approach for improving and changing the material properties and electrochemical efficiency of nanoscale perovskite oxide electrocatalysts attributed to crystal defects and nitrogen doping. However, further modifications to the D-CCO structure in the near future may be employed to address other environmental challenges

    Comprehensive Review of the Properties and Modifications of Carbon Fiber-Reinforced Thermoplastic Composites

    No full text
    Carbon fiber-reinforced polymers are considered a promising composite for many industrial applications including in the automation, renewable energy, and aerospace industries. They exhibit exceptional properties such as a high strength-to-weight ratio and high wear resistance and stiffness, which give them an advantage over other conventional materials such as metals. Various polymers can be used as matrices such as thermosetting, thermoplastic, and elastomers polymers. This comprehensive review focuses on carbon fiber-reinforced thermoplastic polymers due to the advantages of thermoplastic compared to thermosetting and elastomer polymers. These advantages include recyclability, ease of processability, flexibility, and shorter production time. The related properties such as strength, modulus, thermal conductivity, and stability, as well as electrical conductivity, are discussed in depth. Additionally, the modification techniques of the surface of carbon fiber, including the chemical and physical methods, are thoroughly explored. Overall, this review represents and summarizes the future prospective and research developments carried out on carbon fiber-reinforced thermoplastic polymers

    Enhancing the Performance of a Metal-Free Self-Supported Carbon Felt-Based Supercapacitor with Facile Two-Step Electrochemical Activation

    No full text
    Carbon felt (CF) is an inexpensive carbon-based material that is highly conductive and features extraordinary inherent surface area. Using such a metal-free, low-cost material for energy storage applications can benefit their practical implementation; however, only limited success has been achieved using metal-free CF for supercapacitor electrodes. This work thoroughly studies a cost-effective and simple method for activating metal-free self-supported carbon felt. As-received CF samples were first chemically modified with an acidic mixture, then put through a time optimization two-step electrochemical treatment in inorganic salts. The initial oxidative exfoliation process enhances the fiber’s surface area and ultimately introduced oxygen functional groups to the surface, whereas the subsequent reduction process substantially improved the conductivity. We achieved a 205-fold enhancement of capacitance over the as-received CF, with a maximum specific capacitance of 205 Fg−1, while using a charging current density of 23 mAg−1. Additionally, we obtained a remarkable capacitance retention of 78% upon increasing the charging current from 0.4 to 1 Ag−1. Finally, the cyclic stability reached 87% capacitance retention after 2500 cycles. These results demonstrate the potential utility of electrochemically activated CF electrodes in supercapacitor devices

    Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites

    No full text
    The main objective of this work is to develop a variety of hybrid high-density polyethylene (HDPE) micro- and nanocomposites and to investigate their thermal, mechanical, and morphological characteristics as a function of number of fillers and their contents percentage. In this study, 21 formulations of the composites were prepared using fillers with different sizes including micro fillers such as talc, calcium carbonate (CaCO3), as well as nano-filler (fumed silica (FS)) though the melt blending technique. The morphological, mechanical, and thermal properties of the composite samples were evaluated. The morphological study revealed negligible filler agglomerates, good matrix–filler interfacial bonding in case of combined both CaCO3 and FS into the composites. Sequentially, improvements in tensile, flexural and Izod impact strengths as a function of fillers loading in the HDPE matrix have been reported. The maximum enhancement (%) of tensile, flexural and impact strengths were 127%, 86% and 16.6%, respectively, for composites containing 25% CaCO3 and 1% FS without any inclusion of talc filler; this indicates that the types/nature, size, quantity and dispersion status of fillers are playing a major role in the mechanical properties of the prepared composites more than the number of the used fillers

    Cyclohexylammonium Hexaisothiocyanatonickelate(II) Dihydrate as a Single-Source Precursor for High Surface Area Nickel Oxide and Sulfide Nanocrystals

    No full text
    Cyclohexylammonium hexaisothiocyanatonickelate(II) dihydrate, (C6H11NH3)4[Ni(NCS)6]·2H2O, was synthesized, for the first time, by a four-step method in a yield of 95%. The compound was fully characterized by elemental microanalysis, Fourier transform infrared (FTIR), ultraviolet-visible-near infrared (UV-Vis-NIR), and nuclear magnetic resonance (NMR) spectroscopy and thermogravimetry. A single crystal X-ray diffraction (SXRD) gave the monoclinic space group P21/c with a = 15.8179 (5) Å, b = 10.6222 (3) Å, c = 13.8751 (4) Å, β = 109.362 (1)°, V = 2199.45 (11) Å3, Z = 2 (T = 293 K) for this novel hybrid organic–inorganic compound. The title compound was employed as a single-source precursor for the synthesis of mesoporous, high surface area nickel oxide (53 Å; 452 m2/g) and nickel sulfide (46 Å; 220 m2/g) via pyrolysis under air at 550 °C or helium atmosphere at 500 °C, respectively. X-ray powder diffraction (XRPD) demonstrated the nanocrystalline nature of both NiO and NiS with an average crystallite size of 16 and 54 nm, respectively. Scanning electron microscope (SEM) indicated the formation of agglomerated, quasi-spherical particles of nickel oxide and agglomerated flake-like structures of nickel sulfide. The high surface area, porosity, and nanocrystallinity of both NiO and NiS, obtained via this approach, are promising for a wide spectrum of applications

    Cyclohexylammonium Hexaisothiocyanatonickelate(II) Dihydrate as a Single-Source Precursor for High Surface Area Nickel Oxide and Sulfide Nanocrystals

    No full text
    Cyclohexylammonium hexaisothiocyanatonickelate(II) dihydrate, (C6H11NH3)4[Ni(NCS)6]·2H2O, was synthesized, for the first time, by a four-step method in a yield of 95%. The compound was fully characterized by elemental microanalysis, Fourier transform infrared (FTIR), ultraviolet-visible-near infrared (UV-Vis-NIR), and nuclear magnetic resonance (NMR) spectroscopy and thermogravimetry. A single crystal X-ray diffraction (SXRD) gave the monoclinic space group P21/c with a = 15.8179 (5) Å, b = 10.6222 (3) Å, c = 13.8751 (4) Å, β = 109.362 (1)°, V = 2199.45 (11) Å3, Z = 2 (T = 293 K) for this novel hybrid organic–inorganic compound. The title compound was employed as a single-source precursor for the synthesis of mesoporous, high surface area nickel oxide (53 Å; 452 m2/g) and nickel sulfide (46 Å; 220 m2/g) via pyrolysis under air at 550 °C or helium atmosphere at 500 °C, respectively. X-ray powder diffraction (XRPD) demonstrated the nanocrystalline nature of both NiO and NiS with an average crystallite size of 16 and 54 nm, respectively. Scanning electron microscope (SEM) indicated the formation of agglomerated, quasi-spherical particles of nickel oxide and agglomerated flake-like structures of nickel sulfide. The high surface area, porosity, and nanocrystallinity of both NiO and NiS, obtained via this approach, are promising for a wide spectrum of applications
    corecore