2 research outputs found

    Utility of Initial Arterial Blood Gas in Neuromuscular versus Non-Neuromuscular Acute Respiratory Failure in Intensive Care Unit Patients

    No full text
    Background: The arterial blood gas (ABG) parameters of patients admitted to intensive care units (ICUs) with acute neuromuscular respiratory failure (NMRF) and non-NMRF have not been defined or compared in the literature. Methods: We retrospectively collected the initial ABG parameters (pH, PaCO2, PaO2, and HCO3) of patients admitted to ICUs with acute respiratory failure. We compared ABG parameter ranges and the prevalence of abnormalities in NMRF versus non-NMRF and its categories, including primary pulmonary disease (PPD) (chronic obstructive pulmonary disease, asthma, and bronchiectasis), pneumonia, and pulmonary edema. Results: We included 287 patients (NMRF, n = 69; non-NMRF, n = 218). The difference between NMRF and non-NMRF included the median (interquartile range (IQR)) of pH (7.39 (7.32–7.43), 7.33 (7.22–7.39), p < 0.001), PaO2 (86.9 (71.4–123), 79.6 (64.6–99.1) mmHg, p = 0.02), and HCO3 (24.85 (22.9–27.8), 23.4 (19.4–26.8) mmol/L, p = 0.006). We found differences in the median of PaCO2 in NMRF (41.5 mmHg) versus PPD (63.3 mmHg), PaO2 in NMRF (86.9 mmHg) versus pneumonia (74.3 mmHg), and HCO3 in NMRF (24.8 mmol/L) versus pulmonary edema (20.9 mmol/L) (all p < 0.01). NMRF compared to non-NMRF patients had a lower frequency of hypercarbia (24.6% versus 39.9%) and hypoxia (33.8% versus 50.5%) (all p < 0.05). NMRF compared to PPD patients had lower frequency of combined hypoxia and hypercarbia (13.2% versus 37.8%) but more frequently isolated high bicarbonate (33.8% versus 8.9%) (all p < 0.001). Conclusions: The ranges of ABG changes in NMRF patients differed from those of non-NMRF patients, with a greater reduction in PaO2 in non-NMRF than in NMRF patients. Combined hypoxemia and hypercarbia were most frequent in PPD patients, whereas isolated high bicarbonate was most frequent in NMRF patients

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore