1 research outputs found

    Non-Linear Deformations of Liquid-Liquid Interfaces Induced by Electromagnetic Radiation Pressure

    Full text link
    The idea of working with a near-critical phase-separated liquid mixture whereby the surface tension becomes weak, has recently made the field of laser manipulation of liquid interfaces a much more convenient tool in practice. The deformation of interfaces may become as large as several tenths of micrometers, even with the use of conventional laser power. This circumstance necessitates the use of nonlinear geometrical theory for the description of surface deformations. The present paper works out such a theory, for the surface deformation under conditions of axial symmetry and stationarity. Good agreement is found with the experimental results of Casner and Delville [A. Casner and J. P. Delville, Phys. Rev. Lett. {\bf 87}, 054503 (2001); Opt. Lett. {\bf 26}, 1418 (2001); Phys. Rev. Lett. {\bf 90}, 144503 (2003)], in the case of moderate power or a broad laser beam. In the case of large power and a narrow beam, corresponding to surface deformations of about 50 micrometers or higher, the theory is found to over-predict the deformation. Possible explanations of this discrepancy are discussed.Comment: RevTeX4, 19 pages, 4 figures. Sec. IIIB rewritten, 4 new references. To appear in Phys. Rev.
    corecore