186 research outputs found

    The q-harmonic oscillator and an analog of the Charlier polynomials

    Full text link
    A model of a q-harmonic oscillator based on q-Charlier polynomials of Al-Salam and Carlitz is discussed. Simple explicit realization of q-creation and q-annihilation operators, q-coherent states and an analog of the Fourier transformation are found. A connection of the kernel of this transform with biorthogonal rational functions is observed

    New connection formulae for the q-orthogonal polynomials via a series expansion of the q-exponential

    Full text link
    Using a realization of the q-exponential function as an infinite multiplicative sereis of the ordinary exponential functions we obtain new nonlinear connection formulae of the q-orthogonal polynomials such as q-Hermite, q-Laguerre and q-Gegenbauer polynomials in terms of their respective classical analogs.Comment: 14 page

    The Bivariate Rogers-Szeg\"{o} Polynomials

    Full text link
    We present an operator approach to deriving Mehler's formula and the Rogers formula for the bivariate Rogers-Szeg\"{o} polynomials hn(x,yq)h_n(x,y|q). The proof of Mehler's formula can be considered as a new approach to the nonsymmetric Poisson kernel formula for the continuous big qq-Hermite polynomials Hn(x;aq)H_n(x;a|q) due to Askey, Rahman and Suslov. Mehler's formula for hn(x,yq)h_n(x,y|q) involves a 3ϕ2{}_3\phi_2 sum and the Rogers formula involves a 2ϕ1{}_2\phi_1 sum. The proofs of these results are based on parameter augmentation with respect to the qq-exponential operator and the homogeneous qq-shift operator in two variables. By extending recent results on the Rogers-Szeg\"{o} polynomials hn(xq)h_n(x|q) due to Hou, Lascoux and Mu, we obtain another Rogers-type formula for hn(x,yq)h_n(x,y|q). Finally, we give a change of base formula for Hn(x;aq)H_n(x;a|q) which can be used to evaluate some integrals by using the Askey-Wilson integral.Comment: 16 pages, revised version, to appear in J. Phys. A: Math. Theo

    Random matrix ensembles with an effective extensive external charge

    Full text link
    Recent theoretical studies of chaotic scattering have encounted ensembles of random matrices in which the eigenvalue probability density function contains a one-body factor with an exponent proportional to the number of eigenvalues. Two such ensembles have been encounted: an ensemble of unitary matrices specified by the so-called Poisson kernel, and the Laguerre ensemble of positive definite matrices. Here we consider various properties of these ensembles. Jack polynomial theory is used to prove a reproducing property of the Poisson kernel, and a certain unimodular mapping is used to demonstrate that the variance of a linear statistic is the same as in the Dyson circular ensemble. For the Laguerre ensemble, the scaled global density is calculated exactly for all even values of the parameter β\beta, while for β=2\beta = 2 (random matrices with unitary symmetry), the neighbourhood of the smallest eigenvalue is shown to be in the soft edge universality class.Comment: LaTeX209, 17 page

    On a q-extension of Mehta's eigenvectors of the finite Fourier transform for q a root of unity

    Get PDF
    It is shown that the continuous q-Hermite polynomials for q a root of unity have simple transformation properties with respect to the classical Fourier transform. This result is then used to construct q-extended eigenvectors of the finite Fourier transform in terms of these polynomials.Comment: 12 pages, thoroughly rewritten, the q-extended eigenvectors now N-periodic with q an M-th root of

    On Fourier integral transforms for qq-Fibonacci and qq-Lucas polynomials

    Full text link
    We study in detail two families of qq-Fibonacci polynomials and qq-Lucas polynomials, which are defined by non-conventional three-term recurrences. They were recently introduced by Cigler and have been then employed by Cigler and Zeng to construct novel qq-extensions of classical Hermite polynomials. We show that both of these qq-polynomial families exhibit simple transformation properties with respect to the classical Fourier integral transform

    One-Dimensional Partially Asymmetric Simple Exclusion Process on a Ring with a Defect Particle

    Full text link
    The effect of a moving defect particle for the one-dimensional partially asymmetric simple exclusion process on a ring is considered. The current of the ordinary particles, the speed of the defect particle and the density profile of the ordinary particles are calculated exactly. The phase diagram for the correlation length is identified. As a byproduct, the average and the variance of the particle density of the one-dimensional partially asymmetric simple exclusion process with open boundaries are also computed.Comment: 23 pages, 1 figur

    Coherent states for Hopf algebras

    Full text link
    Families of Perelomov coherent states are defined axiomatically in the context of unitary representations of Hopf algebras possessing a Haar integral. A global geometric picture involving locally trivial noncommutative fibre bundles is involved in the construction. A noncommutative resolution of identity formula is proved in that setup. Examples come from quantum groups.Comment: 19 pages, uses kluwer.cls; the exposition much improved; an example of deriving the resolution of identity via coherent states for SUq(2) added; the result differs from the proposals in literatur

    On factorization of q-difference equation for continuous q-Hermite polynomials

    Full text link
    We argue that a customary q-difference equation for the continuous q-Hermite polynomials H_n(x|q) can be written in the factorized form as (D_q^2 - 1)H_n(x|q)=(q^{-n}-1)H_n(x|q), where D_q is some explicitly known q-difference operator. This means that the polynomials H_n(x|q) are in fact governed by the q-difference equation D_qH_n(x|q)=q^{-n/2}H_n(x|q), which is simpler than the conventional one.Comment: 7 page

    Some Orthogonal Polynomials Arising from Coherent States

    Full text link
    We explore in this paper some orthogonal polynomials which are naturally associated to certain families of coherent states, often referred to as nonlinear coherent states in the quantum optics literature. Some examples turn out to be known orthogonal polynomials but in many cases we encounter a general class of new orthogonal polynomials for which we establish several qualitative results.Comment: 21 page
    corecore