186 research outputs found
The q-harmonic oscillator and an analog of the Charlier polynomials
A model of a q-harmonic oscillator based on q-Charlier polynomials of
Al-Salam and Carlitz is discussed. Simple explicit realization of q-creation
and q-annihilation operators, q-coherent states and an analog of the Fourier
transformation are found. A connection of the kernel of this transform with
biorthogonal rational functions is observed
New connection formulae for the q-orthogonal polynomials via a series expansion of the q-exponential
Using a realization of the q-exponential function as an infinite
multiplicative sereis of the ordinary exponential functions we obtain new
nonlinear connection formulae of the q-orthogonal polynomials such as
q-Hermite, q-Laguerre and q-Gegenbauer polynomials in terms of their respective
classical analogs.Comment: 14 page
The Bivariate Rogers-Szeg\"{o} Polynomials
We present an operator approach to deriving Mehler's formula and the Rogers
formula for the bivariate Rogers-Szeg\"{o} polynomials . The proof
of Mehler's formula can be considered as a new approach to the nonsymmetric
Poisson kernel formula for the continuous big -Hermite polynomials
due to Askey, Rahman and Suslov. Mehler's formula for
involves a sum and the Rogers formula involves a sum.
The proofs of these results are based on parameter augmentation with respect to
the -exponential operator and the homogeneous -shift operator in two
variables. By extending recent results on the Rogers-Szeg\"{o} polynomials
due to Hou, Lascoux and Mu, we obtain another Rogers-type formula
for . Finally, we give a change of base formula for
which can be used to evaluate some integrals by using the Askey-Wilson
integral.Comment: 16 pages, revised version, to appear in J. Phys. A: Math. Theo
Random matrix ensembles with an effective extensive external charge
Recent theoretical studies of chaotic scattering have encounted ensembles of
random matrices in which the eigenvalue probability density function contains a
one-body factor with an exponent proportional to the number of eigenvalues. Two
such ensembles have been encounted: an ensemble of unitary matrices specified
by the so-called Poisson kernel, and the Laguerre ensemble of positive definite
matrices. Here we consider various properties of these ensembles. Jack
polynomial theory is used to prove a reproducing property of the Poisson
kernel, and a certain unimodular mapping is used to demonstrate that the
variance of a linear statistic is the same as in the Dyson circular ensemble.
For the Laguerre ensemble, the scaled global density is calculated exactly for
all even values of the parameter , while for (random
matrices with unitary symmetry), the neighbourhood of the smallest eigenvalue
is shown to be in the soft edge universality class.Comment: LaTeX209, 17 page
On a q-extension of Mehta's eigenvectors of the finite Fourier transform for q a root of unity
It is shown that the continuous q-Hermite polynomials for q a root of unity
have simple transformation properties with respect to the classical Fourier
transform. This result is then used to construct q-extended eigenvectors of the
finite Fourier transform in terms of these polynomials.Comment: 12 pages, thoroughly rewritten, the q-extended eigenvectors now
N-periodic with q an M-th root of
On Fourier integral transforms for -Fibonacci and -Lucas polynomials
We study in detail two families of -Fibonacci polynomials and -Lucas
polynomials, which are defined by non-conventional three-term recurrences. They
were recently introduced by Cigler and have been then employed by Cigler and
Zeng to construct novel -extensions of classical Hermite polynomials. We
show that both of these -polynomial families exhibit simple transformation
properties with respect to the classical Fourier integral transform
One-Dimensional Partially Asymmetric Simple Exclusion Process on a Ring with a Defect Particle
The effect of a moving defect particle for the one-dimensional partially
asymmetric simple exclusion process on a ring is considered. The current of the
ordinary particles, the speed of the defect particle and the density profile of
the ordinary particles are calculated exactly. The phase diagram for the
correlation length is identified. As a byproduct, the average and the variance
of the particle density of the one-dimensional partially asymmetric simple
exclusion process with open boundaries are also computed.Comment: 23 pages, 1 figur
Coherent states for Hopf algebras
Families of Perelomov coherent states are defined axiomatically in the
context of unitary representations of Hopf algebras possessing a Haar integral.
A global geometric picture involving locally trivial noncommutative fibre
bundles is involved in the construction. A noncommutative resolution of
identity formula is proved in that setup. Examples come from quantum groups.Comment: 19 pages, uses kluwer.cls; the exposition much improved; an example
of deriving the resolution of identity via coherent states for SUq(2) added;
the result differs from the proposals in literatur
On factorization of q-difference equation for continuous q-Hermite polynomials
We argue that a customary q-difference equation for the continuous q-Hermite
polynomials H_n(x|q) can be written in the factorized form as (D_q^2 -
1)H_n(x|q)=(q^{-n}-1)H_n(x|q), where D_q is some explicitly known q-difference
operator. This means that the polynomials H_n(x|q) are in fact governed by the
q-difference equation D_qH_n(x|q)=q^{-n/2}H_n(x|q), which is simpler than the
conventional one.Comment: 7 page
Some Orthogonal Polynomials Arising from Coherent States
We explore in this paper some orthogonal polynomials which are naturally
associated to certain families of coherent states, often referred to as
nonlinear coherent states in the quantum optics literature. Some examples turn
out to be known orthogonal polynomials but in many cases we encounter a general
class of new orthogonal polynomials for which we establish several qualitative
results.Comment: 21 page
- …