106 research outputs found

    Curcumin Alleviates Matrix Metalloproteinase-3 and -9 Activities during Eradication of Helicobacter pylori Infection in Cultured Cells and Mice

    Get PDF
    Current therapy-regimens against Helicobacter pylori (Hp) infections have considerable failure rates and adverse side effects that urge the quest for an effective alternative therapy. We have shown that curcumin is capable of eradicating Hp-infection in mice. Here we examine the mechanism by which curcumin protects Hp infection in cultured cells and mice. Since, MMP-3 and -9 are inflammatory molecules associated to the pathogenesis of Hp-infection, we investigated the role of curcumin on inflammatory MMPs as well as proinflammatory molecules. Curcumin dose dependently suppressed MMP-3 and -9 expression in Hp infected human gastric epithelial (AGS) cells. Consistently, Hp-eradication by curcumin-therapy involved significant downregulation of MMP-3 and -9 activities and expression in both cytotoxic associated gene (cag)+ve and cag-ve Hp-infected mouse gastric tissues. Moreover, we demonstrate that the conventional triple therapy (TT) alleviated MMP-3 and -9 activities less efficiently than curcumin and curcumin's action on MMPs was linked to decreased pro-inflammatory molecules and activator protein-1 activation in Hp-infected gastric tissues. Although both curcumin and TT were associated with MMP-3 and -9 downregulation during Hp-eradication, but unlike TT, curcumin enhanced peroxisome proliferator-activated receptor-γ and inhibitor of kappa B-α. These data indicate that curcumin-mediated healing of Hp-infection involves regulation of MMP-3 and -9 activities

    Physical gelation of binary mixtures of hydrocarbons mediated by n-lauroyl-L-alanine and characterization of their thermal and mechanical properties

    No full text
    Fatty acid amides, such as n-lauroyl-L-alanine, gelate both aliphatic and aromatic hydrocarbon solvents efficiently. In addition this compound is found to gelate the binary solvent mixtures comprised of aromatic hydrocarbon, e.g., toluene and aliphatic hydrocarbons, e.g., n-heptane. Scanning electron microscopy and atomic force microscopy show that the fiber thickness of the gel assembly increases progressively in the binary mixture of n-heptane and toluene with increasing percentage of toluene. The self-assembly patterns of the gels in individual solvents, n-heptane and toluene, are however different. The toluene gel consists of predominantly one type of morphological species, while n-heptane gel has more than one species leading to the polymorphic nature of the gel. The n-heptane gel is thermally more stable than the toluene gel as evident from the measurement using differential scanning calorimetry. The thermal stability of the gels prepared in the binary mixture of n-heptane and toluene is dependent on the composition of solvent mixture. Rheology of the gels shows that they are shear-thinning material and show characteristic behavior of soft viscoelastic solid. For the gels prepared from binary solvent mixture of toluene and n-heptane, with incorporation of more toluene in the binary mixture, the gel becomes a more viscoelastic solid. The time sweep rheology experiment demonstrates that the gel made in n-heptane has faster gel formation kinetics than that prepared in toluene

    Role of Capping Ligands on the Nanoparticles in the Modulation of Properties of a Hybrid Matrix of Nanoparticles in a 2D Film and in a Supramolecular Organogel

    No full text
    We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two-dimensional films and three-dimensional aggregates derived from N-stearoyl-L-alanine and N-lauroyl-L-alanine, respectively. The assemblies of N-stearoyl-L-alanine afforded stable films at the air-water interface. More compact assemblies were formed upon incorporation of AuNPs in the air-water interface of N-stearoyl-L-alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three-dimensional assemblies of N-lauroyl-L-alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long-range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze-dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel-nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular-level properties by means of manipulation of the information inscribed on the NP surface

    Modulation of viscoelastic properties of physical gels by nanoparticle doping: influence of the nanoparticle capping agent

    No full text
    Cap in hand: The viscoelastic properties of low-molecular-mass organogelator–gold nanoparticle (LMOG–Au NP) composites can be modulated by the capping agent on the nanoparticle. The interactions between the LMOG and Au NP depend on the ability of ligands to interdigitate within the gel aggregate

    Choice of the End Functional Groups in Tri(p-phenylenevinylene) Derivatives Controls Its Physical Gelation Abilities

    No full text
    New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties

    Molecular mechanism of physical gelation of hydrocarbons by fatty acid amides of natural amino acids

    No full text
    A variety of fatty acid amides of different naturally occurring L-amino acids have been synthesized and they are found to form gels with various hydrocarbons. The gelation properties of these compounds were studied by a number of physical methods including FTIR spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, rheology, and it was found that gelation depended critically on the fatty acid chain length and the nature of the amino acid. Among them l-alanine based gelators were found to be the most efficient and versatile gelators as they self-assemble into a layered structure to form the gel network. Mechanisms for the assembly and formation of gels from these molecules are discussed

    Modulation of Viscoelastic Properties of Physical Gels by Nanoparticle Doping: Influence of the Nanoparticle Capping Agent

    No full text
    Materials in the nanometer regime are of great contemporary interest because of their numerous properties and the various applications envisaged for them.[1] In real-life or high-end applications, these materials are often mixed with other systems to yield new composites that have superior properties compared to those of the constituents. For example, novel composites engineered from polymers and carbon nanotubes (CNTs) offer the promise of plastics with enhanced thermal, electronic, and mechanical properties.[2] Similarly, there are reports of studies on nanoparticles (NPs) embedded in polymers and polymeric gels.[3a] These mixtures exhibit interesting optoelectronic properties, such as temperaturedependent reversible UV/Vis spectral changes, as a result of the controlled and reversible aggregation of the NPs in polymer–NP and dendrimer–NP ensembles.[3b–d] The electron– phonon dynamics of NPs entrapped in polymeric gels have also been studied. Compared to NPs in the solution phase, NPs in such confined media display quite different behavior.[3e] Thus, the design and investigation of these materials is highly important and of significant technological relevance

    Large low-frequency resistance noise in chemical vapor deposited graphene

    Get PDF
    We report a detailed investigation of resistance noise in single layer graphene films on Si/SiO2 substrates obtained by chemical vapor deposition (CVD) on copper foils. We find that noise in these systems to be rather large, and when expressed in the form of phenomenological Hooge equation, it corresponds to Hooge parameter as large as 0.1–0.5. We also find the variation in the noise magnitude with the gate voltage (or carrier density) and temperature to be surprisingly weak, which is also unlike the behavior of noise in other forms of graphene, in particular those from exfoliation

    Congenital cystic adenomatoid malformation of lung: A case report

    No full text
    A term neonate developed respiratory distress after 12 hours of birth which was diagnosed as a case of congenital cystic adenomatoid malformation (CCAM) of the right lung by computerized tomography scan. CCAM of the lung is rare congenital cystic lung lesion. DOI: http://dx.doi.org/10.3126/jcmsn.v10i1.12767 Journal of College of Medical Sciences-Nepal, 2014, Vol.10(1); 41-42</p
    corecore