130 research outputs found

    Geometrical Optics applied to 1D Site Response of Inhomogeneous Soil Deposits

    Get PDF
    The technique referred as Geometrical Optics entails considering the wave propagation in a heterogeneous medium as if it happened with infinitely small wavelength. This classic simplification allows to obtain useful approximate analytical results in cases where complete description of the waveform behavior is virtually unattainable, hence its wide use in Physics. This approximation is also commonly termed Ray Theory, and it has already been thoroughly applied in Seismology. This text presents an application of Geometrical Optics to 1D Site Response (1DSR): it is used herein to, first, explain and elucidate the generality of some previous observations and results; second, to partially settle an open question in 1DSR, namely “what are the equivalent homogeneous properties that yield the same response, in terms of natural frequencies and resonance amplitude, for a certain inhomogeneous site?”, provided few assumptions

    Geometrical Optics applied to 1D Site Response of Inhomogeneous Soil Deposits

    Get PDF
    The technique referred as Geometrical Optics entails considering the wave propagation in a heterogeneous medium as if it happened with infinitely small wavelength. This classic simplification allows to obtain useful approximate analytical results in cases where complete description of the waveform behavior is virtually unattainable, hence its wide use in Physics. This approximation is also commonly termed Ray Theory, and it has already been thoroughly applied in Seismology. This text presents an application of Geometrical Optics to 1D Site Response (1DSR): it is used herein to, first, explain and elucidate the generality of some previous observations and results; second, to partially settle an open question in 1DSR, namely “what are the equivalent homogeneous properties that yield the same response, in terms of natural frequencies and resonance amplitude, for a certain inhomogeneous site?”, provided few assumptions

    Optimal implementation of frequency domain impedances in time domain simulations of building structures on embedded foundations

    Get PDF
    Soil-Structure Interaction (SSI) have been studied the last decades, and proper analysis for the linear elastic case in frequency domain has been established successfully. However, SSI is rarely considered in the seismic design of building structures. Regardless of its importance as a significant source of flexibility and energy dissipation, buildings are analyzed using a rigid base assumption, and the design is based on a response spectrum analysis, for which not only the soil, but also time are totally ignored. In a first attempt to improve and to incentivize time domain analyzes compatible with standard finite element packages for the engineering community, the state-of-practice introduces two major simplifications to transform the frequency domain analysis into a time domain analysis: (a) it assumes the frequency at which the impedance value should be read is the flexible-base frequency, and (b) it also assumes that the foundation input motion preserves the phase of the free field motion. Upon these simplifications, the following questions may arise: How does NIST recommendations perform in overall against a full finite element model? Are the embedment effects for shallow foundation not important so that the phase angle can be neglected? What is the best dimensionless frequency to estimate the soil impedance? Is it possible to make a better estimation of the dimensionless frequency to increase the NIST accuracy? In this study, we attempt to address these questions by using an inverse problem formulation

    Data-driven Accelerogram Synthesis using Deep Generative Models

    Get PDF
    Robust estimation of ground motions generated by scenario earthquakes is critical for many engineering applications. We leverage recent advances in Generative Adversarial Networks (GANs) to develop a new framework for synthesizing earthquake acceleration time histories. Our approach extends the Wasserstein GAN formulation to allow for the generation of ground-motions conditioned on a set of continuous physical variables. Our model is trained to approximate the intrinsic probability distribution of a massive set of strong-motion recordings from Japan. We show that the trained generator model can synthesize realistic 3-Component accelerograms conditioned on magnitude, distance, and V_(s30). Our model captures the expected statistical features of the acceleration spectra and waveform envelopes. The output seismograms display clear P and S-wave arrivals with the appropriate energy content and relative onset timing. The synthesized Peak Ground Acceleration (PGA) estimates are also consistent with observations. We develop a set of metrics that allow us to assess the training process's stability and tune model hyperparameters. We further show that the trained generator network can interpolate to conditions where no earthquake ground motion recordings exist. Our approach allows the on-demand synthesis of accelerograms for engineering purposes

    Sudden Death and Left Ventricular Involvement in Arrhythmogenic Cardiomyopathy

    Get PDF
    BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disorder characterized by myocardial fibrofatty replacement and an increased risk of sudden cardiac death (SCD). Originally described as a right ventricular disease, ACM is increasingly recognized as a biventricular entity. We evaluated pathological, genetic, and clinical associations in a large SCD cohort. METHODS: We investigated 5205 consecutive cases of SCD referred to a national cardiac pathology center between 1994 and 2018. Hearts and tissue blocks were examined by expert cardiac pathologists. After comprehensive histological evaluation, 202 cases (4%) were diagnosed with ACM. Of these, 15 (7%) were diagnosed antemortem with dilated cardiomyopathy (n=8) or ACM (n=7). Previous symptoms, medical history, circumstances of death, and participation in competitive sport were recorded. Postmortem genetic testing was undertaken in 24 of 202 (12%). Rare genetic variants were classified according to American College of Medical Genetics and Genomics criteria. RESULTS: Of 202 ACM decedents (35.4±13.2 years; 82% male), no previous cardiac symptoms were reported in 157 (78%). Forty-one decedents (41/202; 20%) had been participants in competitive sport. The adjusted odds of dying during physical exertion were higher in men than in women (odds ratio, 4.58; 95% CI, 1.54-13.68; P=0.006) and in competitive athletes in comparison with nonathletes (odds ratio, 16.62; 95% CI, 5.39-51.24; P<0.001). None of the decedents with an antemortem diagnosis of dilated cardiomyopathy fulfilled definite 2010 Task Force criteria. The macroscopic appearance of the heart was normal in 40 of 202 (20%) cases. There was left ventricular histopathologic involvement in 176 of 202 (87%). Isolated right ventricular disease was seen in 13%, isolated left ventricular disease in 17%, and biventricular involvement in 70%. Among whole hearts, the most common areas of fibrofatty infiltration were the left ventricular posterobasal (68%) and anterolateral walls (58%). Postmortem genetic testing yielded pathogenic variants in ACM-related genes in 6 of 24 (25%) decedents. CONCLUSIONS: SCD attributable to ACM affects men predominantly, most commonly occurring during exertion in athletic individuals in the absence of previous reported cardiac symptoms. Left ventricular involvement is observed in the vast majority of SCD cases diagnosed with ACM at autopsy. Current Task Force criteria may fail to diagnose biventricular ACM before death

    Innate immune signaling in hearts and buccal mucosa cells of patients with arrhythmogenic cardiomyopathy

    Get PDF
    Background: Nuclear factor κB (NF-κB) signaling in cardiac myocytes causes disease in a mouse model of arrhythmogenic cardiomyopathy (ACM) by mobilizing CCR2-expressing macrophages that promote myocardial injury and arrhythmias. Buccal mucosa cells exhibit pathologic features similar to those seen in cardiac myocytes in patients with ACM. Objectives: We sought to determine if persistent innate immune signaling via NF-κB occurs in cardiac myocytes in patients with ACM and if this is associated with myocardial infiltration of proinflammatory cells expressing CCR2. We also determined if buccal mucosa cells from young subjects with inherited disease alleles exhibit NF-κB signaling. Methods: We analyzed myocardium from ACM patients who died suddenly or required cardiac transplantation. We also analyzed buccal mucosa cells from young subjects with inherited disease alleles. The presence of immunoreactive signal for RelA/p65 in nuclei of cardiac myocytes and buccal cells was used as a reliable indicator of active NF-κB signaling. We also counted myocardial CCR2-expressing cells. Results: RelA/p65 signal was seen in numerous cardiac myocyte nuclei in 34 of 36 cases of ACM but not in 19 age-matched control individuals. Cells expressing CCR2 were increased in patient hearts in numbers directly correlated with the number of cardiac myocytes showing NF-κB signaling. NF-κB signaling was observed in buccal cells in young subjects with active disease. Conclusions: Patients with clinically active ACM exhibit persistent innate immune responses in cardiac myocytes and buccal mucosa cells, reflecting a local and systemic inflammatory process. Such individuals may benefit from anti-inflammatory therapy
    corecore