32 research outputs found
Health service delay among pulmonary tuberculosis patients presenting to a National Referral Hospital, Kampala, Uganda: a cross sectional study
Introduction: Delay in the diagnosis of pulmonary tuberculosis (PTB) is common in many countries in Sub-Saharan Africa. Timely diagnosis of active tuberculosis is crucial in minimizing morbidity and mortality in the community as well as nosocomial transmission in health care facilities. This study aimed at determining factors associated with health service delay in the diagnosis and initiation of treatment among new PTB patients presenting to the National Referral Hospital-Mulago.Methods: This was a cross-sectional study among eligible new PTB patients presenting at the National referral TB treatment center Mulago hospital, between March to May 2009. The patients were consecutively recruited and interviewed using a semi-structured questionnaire to assess socio- demographic and health service factors. Multivariate logistic regression using odds ratios and 95% confidence intervals was done.Results: Two hundred and sixty six newly diagnosed PTB patients were enrolled, of which 65.4% experienced health systems delay. The median health service delay was 9days (IQR=8-19). Factors associated with health service delay were: 1n-patient (OR= 4.68, 95% CI: 1.91-11.45), secondary as highest level of education attained (OR= 3.56, 95% CI: 1.18-10.74), primary as highest level of education attained (OR= 6.70, 95% CI: 2.13-21.02), presence of fever (OR= 3.28, 95% CI: 1.05-10.79), and patient delay at health facility (OR= 5.01, 95% CI: 1.33-18.9). Conclusion: The study found a significant proportion of Health service delay among pulmonary tuberculosis patients presenting at the referral hospital. Being an in-patient and having fever as a symptom of tuberculosis needs further attention in order to have timely diagnosis. There is need for awareness on TB especially that most of the TB symptoms present like other febrile illnesses such as malaria and needs consideration when patients present to a health facility.Key words: Tuberculosis, health service delay, treatment delay, diagnostic delay, pulmonary tuberculosi
DNA restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolates from HIV-seropositive and HIV-seronegative patients in Kampala, Uganda
<p>Abstract</p> <p>Background</p> <p>The identification and differentiation of strains of <it>Mycobacterium tuberculosis </it>by DNA fingerprinting has provided a better understanding of the epidemiology and tracing the transmission of tuberculosis. We set out to determine if there was a relationship between the risk of belonging to a group of tuberculosis patients with identical mycobacterial DNA fingerprint patterns and the HIV sero-status of the individuals in a high TB incidence peri-urban setting of Kampala, Uganda.</p> <p>Methods</p> <p>One hundred eighty three isolates of <it>Mycobacterium tuberculosis </it>from 80 HIV seropositive and 103 HIV seronegative patients were fingerprinted by standard IS<it>6110</it>-RFLP. Using the BioNumerics software, strains were considered to be clustered if at least one other patient had an isolate with identical RFLP pattern.</p> <p>Results</p> <p>One hundred and eighteen different fingerprint patterns were obtained from the 183 isolates. There were 34 clusters containing 54% (99/183) of the patients (average cluster size of 2.9), and a majority (96.2%) of the strains possessed a high copy number (≥ 5 copies) of the IS<it>6110 </it>element. When strains with <5 bands were excluded from the analysis, 50.3% (92/183) were clustered, and there was no difference in the level of diversity of DNA fingerprints observed in the two sero-groups (adjusted odds ratio [aOR] 0.85, 95%CI 0.46–1.56, <it>P </it>= 0.615), patients aged <40 years (aOR 0.53, 95%CI 0.25–1.12, <it>P </it>= 0.100), and sex (aOR 1.12, 95%CI 0.60–2.06, <it>P </it>= 0.715).</p> <p>Conclusion</p> <p>The sample showed evidence of a high prevalence of recent transmission with a high average cluster size, but infection with an isolate with a fingerprint found to be part of a cluster was not associated with any demographic or clinical characteristics, including HIV status.</p
Determination of circulating Mycobacterium tuberculosis strains and transmission patterns among pulmonary TB patients in Kawempe municipality, Uganda, using MIRU-VNTR
<p>Abstract</p> <p>Background</p> <p>Mycobacterial interspersed repetitive units - variable number of tandem repeats (MIRU-VNTR) genotyping is a powerful tool for unraveling clonally complex <it>Mycobacterium tuberculosis </it>(MTB) strains and detection of transmission patterns. Using MIRU-VNTR, MTB genotypes and their transmission patterns among patients with new and active pulmonary tuberculosis (PTB) in Kawempe municipality in Kampala, Uganda was determined.</p> <p>Results</p> <p>MIRU-VNTR genotyping was performed by PCR-amplification of 15 MTB-MIRU loci from 113 cultured specimens from 113 PTB patients (one culture sample per patient). To determine lineages, the genotypes were entered into the MIRU-VNTR<it>plus </it>database [<url>http://www.miru-vntrplus.org/</url>] as numerical codes corresponding to the number of alleles at each locus. Ten different lineages were obtained: Uganda II (40% of specimens), Uganda I (14%), LAM (6%), Delhi/CAS (3%), Haarlem (3%), Beijing (3%), Cameroon (3%), EAI (2%), TUR (2%) and S (1%). Uganda I and Uganda II were the most predominant genotypes. Genotypes for 29 isolates (26%) did not match any strain in the database and were considered unique. There was high diversity of MIRU-VNTR genotypes, with a total of 94 distinct patterns. Thirty four isolates grouped into 15 distinct clusters each with two to four isolates. Eight households had similar MTB strains for both index and contact cases, indicating possible transmission.</p> <p>Conclusion</p> <p>MIRU-VNTR genotyping revealed high MTB strain diversity with low clustering in Kawempe municipality. The technique has a high discriminatory power for genotyping MTB strains in Uganda.</p
Use of the GenoType® MTBDRplus assay to assess drug resistance of Mycobacterium tuberculosis isolates from patients in rural Uganda
<p>Abstract</p> <p>Background</p> <p>Drug resistance levels and patterns among <it>Mycobacterium tuberculosis </it>isolates from newly diagnosed and previously treated tuberculosis patients in Mbarara Uganda were investigated.</p> <p>Methods</p> <p>We enrolled, consecutively, all newly diagnosed and previously treated smear-positive TB patients aged ≥ 18 years. Isolates were tested for drug resistance against rifampicin (RIF) and isoniazid (INH) using the Genotype<sup>® </sup>MDRTBplus assay and results were compared with those obtained by the indirect proportion method on Lowenstein-Jensen media. HIV testing was performed using two rapid HIV tests.</p> <p>Results</p> <p>A total of 125 isolates from 167 TB suspects with a mean age 33.7 years and HIV prevalence of 67.9% (55/81) were analysed. A majority (92.8%) of the participants were newly presenting while only 7.2% were retreatment cases. Resistance mutations to either RIF or INH were detected in 6.4% of the total isolates. Multidrug resistance, INH and RIF resistance was 1.6%, 3.2% and 4.8%, respectively. The <it>rpoβ </it>gene mutations seen in the sample were D516V, S531L, H526Y H526 D and D516V, while one strain had a Δ1 mutation in the wild type probes. There were three strains with <it>katG </it>(codon 315) gene mutations while only one strain showed the <it>inhA </it>promoter region gene mutation.</p> <p>Conclusion</p> <p>The TB resistance rate in Mbarara is relatively low. The GenoType<sup>® </sup>MTBDRplus assay can be used for rapid screening of MDR-TB in this setting.</p
Brucellosis remains a neglected disease inthe developing world: a call forinterdisciplinary action
Brucellosis places significant burdens on the human healthcare system and limits the economic growth of individuals, communities, and nations where such development is especially important to diminish the prevalence of poverty. The implementation of public policy focused on mitigating the socioeconomic effects of brucellosis in human and animal populations is desperately needed. When developing a plan to mitigate the associated consequences, it is vital to consider both the abstract and quantifiable effects. This requires an interdisciplinary and collaborative, or One Health, approach that consists of public education, the development of an infrastructure for disease surveillance and reporting in both veterinary and medical fields, and campaigns for control in livestock and wildlife species
Molecular epidemiology, drug susceptibility and economic aspects of tuberculosis in mubende district, Uganda
<div><p>Background</p><p>Tuberculosis (TB) remains a global public health problem whose effects have major impact in developing countries like Uganda. This study aimed at investigating genotypic characteristics and drug resistance profiles of <i>Mycobacterium tuberculosis</i> isolated from suspected TB patients. Furthermore, risk factors and economic burdens that could affect the current control strategies were studied.</p><p>Methods</p><p>TB suspected patients were examined in a cross-sectional study at the Mubende regional referral hospital between February and July 2011. A questionnaire was administered to each patient to obtain information associated with TB prevalence. Isolates of <i>M. tuberculosis</i> recovered during sampling were examined for drug resistance to first line anti-TB drugs using the BACTEC-MGIT960<sup>TM</sup>system. All isolates were further characterized using deletion analysis, spoligotyping and MIRU-VNTR analysis. Data were analyzed using different software; MIRU-VNTR <i>plus</i>, SITVITWEB, BioNumerics and multivariable regression models.</p><p>Results</p><p><i>M. tuberculosis</i> was isolated from 74 out of 344 patients, 48 of these were co-infected with HIV. Results from the questionnaire showed that previously treated TB, co-infection with HIV, cigarette smoking, and overcrowding were risk factors associated with TB, while high medical related transport bills were identified as an economic burden. Out of the 67 isolates that gave interpretable results, 23 different spoligopatterns were detected, nine of which were novel patterns. T2 with the sub types Uganda-I and Uganda-II was the most predominant lineage detected. Antibiotic resistance was detected in 19% and multidrug resistance was detected in 3% of the isolates.</p><p>Conclusion</p><p>The study detected <i>M. tuberculosis</i> from 21% of examined TB patients, 62% of whom were also HIV positive. There is a heterogeneous pool of genotypes that circulate in this area, with the T2 lineage being the most predominant. High medical related transport bills and drug resistance could undermine the usefulness of the current TB strategic interventions.</p></div
Prevalence of tuberculous lesion in cattle slaughtered in Mubende district, Uganda
BACKGROUND: The aim of this study was to estimate the prevalence of gross pathology suggestive of bovine tuberculosis (TB-like lesions) and evaluate animal’s characteristics associated with the risk of having bovine TB-like lesions among cattle slaughtered in Mubende district in the Uganda cattle corridor. METHOD: We conducted a cross sectional study in which 1,576 slaughtered cattle in Mubende district municipal abattoir underwent post-mortem inspection between August 2013 and January 2014. The presence of bovine TB-like lesions in addition to the animal’s sex, age, breed, and sub-county of origin prior to slaughter were recorded. Associations between the presence of bovine TB-like lesions and animal’s age, sex, breed, and sub-county of origin prior to slaughter were initially analysed using a univariable approach with the chi-square test, and subsequently with a multivariable logistic regression model to assess the combined impact of these animal characteristics with the risk of having a bovine TB-like lesion. Additionally, and as a secondary objective, tissue samples were collected from all carcases that had a bovine TB-like lesion and were processed using standard Mycobacterium culture and identification methods. The culture and acid fast positive samples were tested using Capilia TB-neo® assay to identify Mycobacterium tuberculosis complex (MTC). RESULTS: Of 1,576 carcasses inspected, 9.7% (153/1,576) had bovine TB-like lesions from which Mycobacterium spp and Mycobacterium Tuberculosis Complex (MTC) were isolated in 13 (8.4%) and 12 (7.8%) respectively. Bovine TB-like lesions were more likely to be found in females (OR = 1.49, OR 95% CI: 1.06–2.13) and in older cattle (OR = 2.5, 95% CI: 1.64–3.7). When compared to Ankole cattle, Cross breed (OR = 6.5, OR 95% CI: 3.37–12.7) and Zebu cattle (OR = 2.57, 95% CI: 1.78–3.72) had higher odds of having bovine TB-like lesions. Animals from Kasanda (OR = 2.5, 95% CI: 1.52–4.17) were more likely to have bovine TB-like lesions than cattle from Kasambya. CONCLUSIONS: The findings of study reveals that approximately one in ten slaughtered cattle presents with gross pathology suggestive of bovine TB in Mubende district in the Uganda cattle corridor district, however, we isolated MTC in only 8.4% of these bovine TB-like lesions. Therefore, there is a need to understand the cause of all the other bovine TB-like lesions in order to safe guard diagnostic integrity of meat inspection in Uganda
The Guinea-Bissau Family of Mycobacterium tuberculosis Complex Revisited
The Guinea-Bissau family of strains is a unique group of the Mycobacterium tuberculosis complex that, although genotypically closely related, phenotypically demonstrates considerable heterogeneity. We have investigated 414 M. tuberculosis complex strains collected in Guinea-Bissau between 1989 and 2008 in order to further characterize the Guinea-Bissau family of strains. To determine the strain lineages present in the study sample, binary outcomes of spoligotyping were compared with spoligotypes existing in the international database SITVIT2. The major circulating M. tuberculosis clades ranked in the following order: AFRI (n = 195, 47.10%), Latin-American-Mediterranean (LAM) (n = 75, 18.12%), ill-defined T clade (n = 53, 12.8%), Haarlem (n = 37, 8.85%), East-African-Indian (EAI) (n = 25, 6.04%), Unknown (n = 12, 2.87%), Beijing (n = 7, 1.68%), X clade (n = 4, 0.96%), Manu (n = 4, 0.97%), CAS (n = 2, 0.48%). Two strains of the LAM clade isolated in 2007 belonged to the Cameroon family (SIT61). All AFRI isolates except one belonged to the Guinea-Bissau family, i.e. they have an AFRI_1 spoligotype pattern, they have a distinct RFLP pattern with low numbers of IS6110 insertions, and they lack the regions of difference RD7, RD8, RD9 and RD10, RD701 and RD702. This profile classifies the Guinea-Bissau family, irrespective of phenotypic biovar, as part of the M. africanum West African 2 lineage, or the AFRI_1 sublineage according to the spoligtyping nomenclature. Guinea-Bissau family strains display a variation of biochemical traits classically used to differentiate M. tuberculosis from M. bovis. Yet, the differential expression of these biochemical traits was not related to any genes so far investigated (narGHJI and pncA). Guinea-Bissau has the highest prevalence of M. africanum recorded in the African continent, and the Guinea-Bissau family shows a high phylogeographical specificity for Western Africa, with Guinea-Bissau being the epicenter. Trends over time however indicate that this family of strains is waning in most parts of Western Africa, including Guinea-Bissau (p = 0.048)
Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review.
BACKGROUND
The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa.
MAIN BODY
The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively.
CONCLUSION
The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making
Characterization of Non-Tuberculous Mycobacterium from Humans and Water in an Agro pastoral area in Zambia
Abstract Background The non-tuberculous mycobacteria include those mycobacterium species that are not members of the Mycobacterium tuberculosis complex, the causative agent of pulmonary tuberculosis and Mycobacterium leprae. In Zambia, Non-tuberculous Mycobacteria are gaining recognition as pathogens of public health significance. However, there is scanty information on the isolation and speciation of these organisms for better patient management, consequently reducing the burden of these infections. Given the above information, the thrust of this study was to isolate and characterize NTM from humans and water in Namwala district of Zambia. Method This was a cross-sectional study were 153 individuals with suspected TB were sampled from four health facilities in Namwala district, sputum samples were also collected. Additionally, 149 water samples were collected from different water drinking sources such as Tap water, Borehole water, rivers, wells and streams. Standard TB culture methods were employed to isolate Non-tuberculous Mycobacteria and later 16S–23S internal transcribed spacer region Sequencing was employed to characterize NTM. Results Seven (7, 4.6%) NTM species were identified from humans with M. arupense (3, 42.9%) being the most common organism, while twenty three (23, 15.4%) NTM were identified from water with the common species being Mycobacterium gordonae (5, 21.7%). Mycobacterium avium and Mycobacterium fortuitum were both identified from human and water samples. Conclusion This study has shown the isolation of NTM species from humans and water. The isolation of NTM from drinking water sources could signify a public health risk to humans