4,555 research outputs found
Semi-autonomous scheme for pushing micro-objects
-In many microassembly applications, it is often
desirable to position and orient polygonal micro-objects lying on
a planar surface. Pushing micro-objects using point contact provides
more flexibility and less complexity compared to pick and
place operation. Due to the fact that in micro-world surface forces
are much more dominant than inertial forces and these forces
are distributed unevenly, pushing through the center of mass of
the micro-object will not yield a pure translational motion. In
order to translate a micro-object, the line of pushing should pass
through the center of friction. In this paper, a semi-autonomous
scheme based on hybrid vision/force feedback is proposed to push
microobjects with human assistance using a custom built telemicromanipulation
setup to achieve pure translational motion.
The pushing operation is divided into two concurrent processes:
In one process human operator who acts as an impedance
controller alters the velocity of the pusher while in contact with
the micro-object through scaled bilateral teleoperation with force
feedback. In the other process, the desired line of pushing for
the micro-object is determined continuously using visual feedback
procedures so that it always passes through the varying center of
friction. Experimental results are demonstrated to prove nanoNewton
range force sensing, scaled bilateral teleoperation with
force feedback and pushing microobjects
Discrete-time sliding mode control of high precision linear drive using frictional model
The paper deals with high precision motion control of linear drive system. The accuracy and behavior of the linear drive system are highly affected by the non-linear frictional component compromising of stiction, viscous and stribeck effect present in the system especially in the vicinity of zero velocity. In order to achieve the high accuracy and motion it is mandatory to drive our system with low velocity resulting in many non linear phenomena like tracking error, limit cycles and undesired stick-slip motion etc. This paper discuss the design and implementation of discrete time sliding mode control along with the implementation of dynamic frictional model in order to estimate and compensate the disturbance arising due to frictional component. Experimental results are presented to illustrate the effectiveness and achievable control performance of the proposed scheme
Force feedback pushing scheme for micromanipulation applications
Pushing micro-objects using point contact provides
more flexibility and less complexity compared to pick
and place operation. Due to the fact that in micro-world
surface forces are much more dominant than inertial forces
and these forces are distributed unevenly, pushing through
the center of mass of the micro-object may not yield a pure
translational motion. In order to translate a micro-object, the
line of pushing should pass through the center of friction. In this
paper, a semi-autonomous scheme based on hybrid vision/force
feedback procedure is proposed to push micro-objects with
human assistance using a custom built tele-micromanipulation
setup to achieve translational motion. In the semi-autonomous
pushing process, velocity controlled pushing with force feedback
is realized along x-axis by the human operator while y-axis
orientation is undertaken automatically using visual feedback.
This way the desired line of pushing for the micro-object
is controlled to pass through the varying center of friction.
Experimental results are shown to prove nano-Newton range
force sensing, scaled bilateral teleoperation with force feedback
and snapshot of pushing operation
Discrete sliding mode control of piezo actuator in nano-scale range
In this paper Discrete Sliding Mode Control (SMC) of Piezo actuator is demonstrated in order to achieve a very high accuracy in Nano-scale with the desired dynamics. In spite of the fast dynamics of the Piezo actuator the problem of chattering is eliminated with the SMC control structure. The Piezo actuator suffers from hysteresis loop which is the inherent property and it gives rise to the dominant non-linearity in the system. The proposed SMC control structure has been proved to deliver chattering free motion along with the compensation of the non linearity present due to hysteresis in the system. To further enhance the accuracy of the closed loop system and to be invariant to changes in the plant parameters a robust disturbance observer is designed on SMC framework by taking into consideration the lumped nominal plant parameters. Experimental results for closed loop position are presented in order to verify the Nano-scale accuracy
- …