4 research outputs found

    Molecular detection of Coxiella burnetii and Coxiella species in rats and chickens from poultry farms in North West province, South Africa

    Get PDF
    DATA AVAILABILITY: Raw data that support the finding of this study are available from the corresponding author, upon reasonable request.BACKGROUND : Coxiella burnetii is a bacterial pathogen that causes query fever and coxiellosis in humans and animals, respectively. There is a scarcity of studies on the prevalence of C. burnetii infections in rats and chickens in South Africa. OBJECTIVE : The aim of this study was to determine the occurrence of C. burnetii in rats and chickens sampled from poultry farms in the North West Province of South Africa. METHODS : DNA was extracted from rodent kidneys (n = 68) and chicken faeces (n = 52). Two rodent pest species, namely Rattus rattus and Rattus tanezumi, were identified by analysis of CO1 gene sequences. Detection of C. burnetii was carried out using polymerase chain reaction assays targeting 23S rRNA, 16S rRNA and IS111 markers RESULTS : C. burnetii was detected in 16.2%, 8.8% and 25% of R. rattus, R. tanezumi and chickens, respectively. CONCLUSIONS : The findings in this study demonstrate that rodents and chickens are harbouring C. burnetii at sampled poultry farms. There should be frequent screening for C. burnetii in poultry operations. The likelihood of future transmission between rodents and chickens, including humans, also needs to be investigated.https://wileyonlinelibrary.com/journal/vms3Zoology and Entomolog

    Assessment of gastrointestinal nematode anthelmintic resistance and acaricidal efficacy of fluazuron-flumethrin on sheep and goat ticks in the North West province of South Africa

    Get PDF
    Background and Aim: Anthelmintic resistance (AR) and acaricide resistance (ACR) pose great economic threat to communal livestock raised by rural communities, limiting sustainable production. This study was conducted to assess the occurrence of AR and ACR against nematodes and ticks that infest small ruminants (sheep and goats) from small-scale farming communities in the North West Province of South Africa, as well as document the associated risk factors. Materials and Methods: The study was conducted on small-scale farming locations in two districts of the North West Province, namely, Dr. Ruth Segomotsi Mompati district and Dr. Kenneth Kaunda district, from November 2019 to March 2020. A questionnaire survey based specifically on antiparasitic treatment and related management practices was administered to 86 small-scale farmers. A fecal egg count reduction test (FECRT) was used to determine in vivo AR in small ruminants against benzimidazole (BZD), levamisole, and macrocyclic lactone on nine ruminant farms. Then, deoxyribonucleic acid was extracted from L3 larvae and resistant nematodes were identified using a polymerase chain reaction, targeting the internal transcribed spacer 2 gene. An egg hatch assay (EHA) and a larval mortality assay (LMA) were used to determine in vitro AR against thiabendazole (TBZ and BZD) in the same farms. Acaricide resistance against fluazuron–flumethrin (Drastic Deadline eXtreme) pour-on was assessed using an adult immersion test (AIT) on Rhipicephalus evertsi. Results: Questionnaire results indicated that most farmers (89%) relied solely on anthelmintics. Farmers used visual appraisal to estimate the dosage, which is the primary cause of resistance. The FECRT revealed AR in all the farms. Egg hatch assay results revealed AR development against TBZ in all districts, with >95% of the eggs hatching at variable doses. Larval mortality assay results revealed the development of resistance against BZD, with 50% of L3 larvae surviving at different doses in all farms. Adult immersion test results indicated that fluazuron-flumethrin (>99%) exhibited high acaricidal efficacy against R. evertsi by inhibiting tick oviposition. Conclusion: This investigation found that sheep and goats in the studied areas are developing AR to gastrointestinal parasites. The findings of in vivo tests showed resistance with fecal egg count reduction percentage of <95% or lower confidence limit of <90%. The results of EHA and LMA revealed no evidence of inhibition of egg development and larval mortality, indicating the development of resistance. Acaricide resistance was not detected against fluazuron–flumethrin, which is commonly used in the study areas. Thus, developing management methods for these economically significant livestock nematodes, including teaching small-scale farmers how to properly administer anthelmintics and acaricides to their livestock, is urgently needed

    Haemoplasma Prevalence and Diversity in Three Invasive Rattus Species from Gauteng Province, South Africa

    Get PDF
    Invasive Rattus species are carriers of haemotropic Mycoplasmas (haemoplasmas) globally, but data from Africa are lacking. Using a PCR-sequencing approach, we assessed haemoplasma prevalence and diversity in kidney and buccal swabs collected from three invasive Rattus species (Rattus rattus, R. norvegicus and R. tanezumi) in Gauteng Province, South Africa. Whilst the overall sequence-confirmed haemoplasma prevalence was 38.4%, infection rates in R. rattus (58.3%) were significantly higher (&chi;2 = 12.96; df = 2; n = 99 p &lt; 0.05) than for R. tanezumi (14.3%). Differences between host sex (&chi;2 = 3.59 &times; 10&minus;31; df = 1; n = 99; p = 1.00) and age (&chi;2 = 4.28; df = 2; n = 99; p = 0.12) were not significant. Whilst buccal (1.01%) and ectoparasite positivity (2.13%) were low, these results suggest that multiple transmission routes are possible. Three phylogenetically distinct lineages, consistent with global rat-associated strains described to date, were detected, namely, &lsquo;Candidatus Mycoplasma haemomuris subsp. Ratti&rsquo;, and two Rattus-specific haemoplasmas that are yet to be formally described. These results expand the known distribution of invasive rat-associated haemoplasmas and highlight the potential for pathogen co-invasion of new territories together with invading rodent hosts

    Molecular detection of Coxiella burnetii and Coxiella species in rats and chickens from poultry farms in North West Province, South Africa

    No full text
    Abstract Background Coxiella burnetii is a bacterial pathogen that causes query fever and coxiellosis in humans and animals, respectively. There is a scarcity of studies on the prevalence of C. burnetii infections in rats and chickens in South Africa. Objective The aim of this study was to determine the occurrence of C. burnetii in rats and chickens sampled from poultry farms in the North West Province of South Africa. Methods DNA was extracted from rodent kidneys (n = 68) and chicken faeces (n = 52). Two rodent pest species, namely Rattus rattus and Rattus tanezumi, were identified by analysis of CO1 gene sequences. Detection of C. burnetii was carried out using polymerase chain reaction assays targeting 23S rRNA, 16S rRNA and IS111 markers. Results C. burnetii was detected in 16.2%, 8.8% and 25% of R. rattus, R. tanezumi and chickens, respectively. Conclusions The findings in this study demonstrate that rodents and chickens are harbouring C. burnetii at sampled poultry farms. There should be frequent screening for C. burnetii in poultry operations. The likelihood of future transmission between rodents and chickens, including humans, also needs to be investigated
    corecore