4 research outputs found

    Notecarin D Binds Human Factor V and Factor V-a with High Affinity in the Absence of Membranes

    No full text
    Notecarin D (NotD) is a prothrombin (ProT) activator in the venom of the tiger snake, Notechis scutatus, and a factor Xa (FXa) homolog. NotD binds specifically to the FXa binding site expressed on factor V (FV) upon activation to factor Va (FVa) by thrombin. NotD active site-labeled with 5-fluorescein ([5F]FFR-NotD) binds FV and FVa with remarkably high affinity in the absence of phospholipids (K(D) 12 and ≤ 0.01 nm, respectively). In the presence of membranes, the affinity of [5F]FFR-NotD for FVa is similar, but increased ∼55-fold for FV. Binding of FXa active site-labeled with Oregon Green to FV and FVa in the presence of phospholipids is ∼5,000- and ∼80-fold weaker than [5F]FFR-NotD, respectively. NotD reports FVa and not FV binding by a 3-fold increase in tripeptide substrate hydrolysis, demonstrating allosteric regulation by FVa. The NotD·FVa·membrane complex activates ProT with K(m)((app)) similar to prothrombinase, and ∼85-fold weaker without membranes. Active site-blocked NotD exhibits potent anticoagulant activity in plasma thrombin generation assays, representing inhibition of productive prothrombinase assembly and possible disruption of FXa inhibition by the tissue factor pathway inhibitor. The results show that high affinity binding of NotD to FVa is membrane-independent, unlike the strict membrane dependence of FXa for high affinity FVa binding

    In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation

    No full text
    Coagulase-positive Staphylococcus aureus (S. aureus) is the major causal pathogen of acute endocarditis, a rapidly progressing, destructive infection of the heart valves. Bacterial colonization occurs at sites of endothelial damage, where (together with fibrin and platelets) it initiates the formation of abnormal growths known as vegetations. Here we report that an engineered analog of prothrombin detected S. aureus in endocarditic vegetations via noninvasive fluorescence or PET imaging. These prothrombin derivatives bound to staphylocoagulase and intercalated into growing bacterial vegetations. We also present evidence for bacterial quorum sensing in the regulation of staphylocoagulase expression by S. aureus. Staphylocoagulase expression was limited to the growing edge of mature vegetations, where it was exposed to the host and co-localized with the imaging probe. When endocarditis was induced with an S. aureus strain with genetic deletion of coagulases, survival of mice improved, highlighting the role of staphylocoagulase as a virulence factor
    corecore