15,270 research outputs found
Generation and Breakup of Worthington Jets After Cavity Collapse
Helped by the careful analysis of their experimental data, Worthington (1897)
described roughly the mechanism underlying the formation of high-speed jets
ejected after the impact of an axisymmetric solid on a liquid-air interface. In
this work we combine detailed boundary-integral simulations with analytical
modeling to describe the formation and break-up of such Worthington jets in two
common physical systems: the impact of a circular disc on a liquid surface and
the release of air bubbles from an underwater nozzle. We first show that the
jet base dynamics can be predicted for both systems using our earlier model in
Gekle, Gordillo, van der Meer and Lohse. Phys. Rev. Lett. 102 (2009).
Nevertheless, our main point here is to present a model which allows us to
accurately predict the shape of the entire jet. Good agreement with numerics
and some experimental data is found. Moreover, we find that, contrarily to the
capillary breakup of liquid cylinders in vacuum studied by Rayleigh, the
breakup of stretched liquid jets at high values of both Weber and Reynolds
numbers is not triggered by the growth of perturbations coming from an external
source of noise. Instead, the jet breaks up due to the capillary deceleration
of the liquid at the tip which produces a corrugation to the jet shape. This
perturbation, which is self-induced by the flow, will grow in time promoted by
a capillary mechanism. We are able to predict the exact shape evolution of
Worthington jets ejected after the impact of a solid object - including the
size of small droplets ejected from the tip due to a surface-tension driven
instability - using as the single input parameters the minimum radius of the
cavity and the flow field before the jet emerges
Mechanism for current saturation and energy dissipation in graphene transistors
From a combination of careful and detailed theoretical and experimental
studies, we demonstrate that the Boltzmann theory including all scattering
mechanisms gives an excellent account, with no adjustable parameters, of high
electric field transport in single as well as double-oxide graphene
transistors. We further show unambiguously that scattering from the substrate
and superstrate surface optical (SO) phonons governs the high field transport
and heat dissipation over a wide range of experimentally relevant parameters.
Models that neglect SO phonons altogether or treat them in a simple
phenomenological manner are inadequate. We outline possible strategies for
achieving higher current and complete saturation in graphene devices.Comment: revtex, 5 pages, 3 figures, to appear in Phys. Rev. Lett
Sharing Resources: Opportunities for Smaller Primary Care Practices to Increase Their Capacity for Patient Care
Outlines findings linking shared resources with use of health information technology, care coordination, self-management, and quality monitoring, and strategies to increase resources among small and midsize practices by expanding shared resource models
Recommended from our members
Current and Future Issues in the Development of Spinal Agents for the Management of Pain.
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and downregulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing. The present review addresses the biology of spinal nociceptive processing as relevant to the effects of intrathecally-delivered drugs in altering pain processing following acute stimulation, tissue inflammation/injury and nerve injury. The review covers i) the major classes of spinal agents currently employed as intrathecal analgesics (opioid agonists, alpha 2 agonists; sodium channel blockers; calcium channel blockers; NMDA blockers; GABA A/B agonists; COX inhibitors; ii) ongoing developments in the pharmacology of spinal therapeutics focusing on less studied agents/targets (cholinesterase inhibition; Adenosine agonists; iii) novel intrathecal targeting methodologies including gene-based approaches (viral vectors, plasmids, interfering RNAs); antisense, and toxins (botulinum toxins; resniferatoxin, substance P Saporin); and iv) issues relevant to intrathecal drug delivery (neuraxial drug distribution), infusate delivery profile, drug dosing, formulation and principals involved in the preclinical evaluation of intrathecal drug safety
Generalizations of the Abstract Boundary singularity theorem
The Abstract Boundary singularity theorem was first proven by Ashley and
Scott. It links the existence of incomplete causal geodesics in strongly
causal, maximally extended spacetimes to the existence of Abstract Boundary
essential singularities, i.e., non-removable singular boundary points. We give
two generalizations of this theorem: the first to continuous causal curves and
the distinguishing condition, the second to locally Lipschitz curves in
manifolds such that no inextendible locally Lipschitz curve is totally
imprisoned. To do this we extend generalized affine parameters from
curves to locally Lipschitz curves.Comment: 24 page
Nonlinear energy-loss straggling of protons and antiprotons in an electron gas
The electronic energy-loss straggling of protons and antiprotons moving at
arbitrary nonrelativistic velocities in a homogeneous electron gas are
evaluated within a quadratic response theory and the random-phase approximation
(RPA). These results show that at low and intermediate velocities quadratic
corrections reduce significantly the energy-loss straggling of antiprotons,
these corrections being, at low-velocities, more important than in the
evaluation of the stopping power.Comment: 4 pages, 3 figures, to appear in Phys. Rev.
- …