26 research outputs found

    Velocity correlations in dense granular flows observed with internal imaging

    Full text link
    We show that the velocity correlations in uniform dense granular flows inside a silo are similar to the hydrodynamic response of an elastic hard-sphere liquid. The measurements are made using a fluorescent refractive index matched interstitial fluid in a regime where the flow is dominated by grains in enduring contact and fluctuations scale with the distance traveled, independent of flow rate. The velocity autocorrelation function of the grains in the bulk shows a negative correlation at short time and slow oscillatory decay to zero similar to simple liquids. Weak spatial velocity correlations are observed over several grain diameters. The mean square displacements show an inflection point indicative of caging dynamics. The observed correlations are qualitatively different at the boundaries.Comment: 11 pages, 4 figure

    Friction of a slider on a granular layer: Non-monotonic thickness dependence and effect of boundary conditions

    Full text link
    We investigate the effective friction encountered by a mass sliding on a granular layer as a function of bed thickness and boundary roughness conditions. The observed friction has minima for a small number of layers before it increases and saturates to a value which depends on the roughness of the sliding surface. We use an index-matched interstitial liquid to probe the internal motion of the grains with fluorescence imaging in a regime where the liquid has no significant effect on the measured friction. The shear profiles obtained as a function of depth show decrease in slip near the sliding surface as the layer thickness is increased. We propose that the friction depends on the degree of grain confinement relative to the sliding surfaces.Comment: 4 pages, 6 figure

    Fast decay of the velocity autocorrelation function in dense shear flow of inelastic hard spheres

    Full text link
    We find in complementary experiments and event driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function ψ(t)\psi(t) decays much faster than t3/2t^{-3/2} obtained for a fluid of elastic spheres at equilibrium. Particle displacements are measured in experiments inside a gravity driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of ψ(t)\psi(t) is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.Comment: 6 pages, 4 figure

    Solid-fluid transition in a granular shear flow

    Get PDF
    The rheology of a granular shear flow is studied in a quasi-2d rotating cylinder. Measurements are carried out near the midpoint along the length of the surface flowing layer where the flow is steady and non-accelerating. Streakline photography and image analysis are used to obtain particle velocities and positions. Different particle sizes and rotational speeds are considered. We find a sharp transition in the apparent viscosity (η\eta) variation with rms velocity (uu). In the fluid-like region above the depth corresponding to the transition point (higher rms velocities) there is a rapid increase in viscosity with decreasing rms velocity. Below the transition depth we find ηu1.5\eta \propto u^{-1.5} for all the different cases studied and the material approaches an amorphous solid-like state deep in the layer. The velocity distribution is Maxwellian above the transition point and a Poisson velocity distribution is obtained deep in the layer. The observed transition appears to be analogous to a glass transition.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Lubrication effects on the flow of wet granular materials

    Full text link
    We investigate the dynamics of a partially saturated grain-liquid mixture with a rotating drum apparatus. The drum is partially filled with the mixture and then rotated about its horizontal axis. We focus on the continous avalanching regime and measure the impact of volume fraction and viscosity of the liquid on the dynamic surface angle. The inclination angle of the surface is observed to increase sharply to a peak and then decrease as a function of liquid volume fraction. The height of the peak is observed to increase with rotation rate. For higher liquid volume fractions, the inclination angle of the surface can decrease with viscosity before increasing. The viscosity where the minima occurs decreases with the rotation rate of the drum. Limited measurements of the flow depth were made, and these were observed to show only fractional changes with volume fraction and rotation speeds. We show that the qualitative features of our observations can be understood by analyzing the effect of lubrication forces on the timescale over which particles come in contact.Comment: 7 pages, 8 figure
    corecore