200 research outputs found
The mapping class group and the Meyer function for plane curves
For each d>=2, the mapping class group for plane curves of degree d will be
defined and it is proved that there exists uniquely the Meyer function on this
group. In the case of d=4, using our Meyer function, we can define the local
signature for 4-dimensional fiber spaces whose general fibers are
non-hyperelliptic compact Riemann surfaces of genus 3. Some computations of our
local signature will be given.Comment: 24 pages, typo adde
Recommended from our members
Multiple - pion production by 200-GeV/c muons
The main objectives of this experiment are to study the multiple-pion production, especially fire ball-like behavior at the known muon energy, and to compare with the cosmic ray data by means of cloud chambers containing lead plates and with emulsion stack data in the lower energy region (5GeV/c). The cloud chamber data by cosmic ray muons has been investigated by means of the One Fire Ball Model (the mesons are emitted from excited centers) in the energy range of 10 to 100 GeV, while the emulsion data at 5 GeV/c have indicated dominant contributions from isobars (the excited baryon of 1238 MeV). In the cosmic ray data we can not discuss more details of 'the fire ball', such as its mass or temperature, because those incident muon energies can not be estimated directly
Deformation of canonical morphisms and the moduli of surfaces of general type
In this article we study the deformation of finite maps and show how to use
this deformation theory to construct varieties with given invariants in a
projective space. Among other things, we prove a criterion that determines when
a finite map can be deformed to a one--to--one map. We use this criterion to
construct new simple canonical surfaces with different and . Our
general results enable us to describe some new components of the moduli of
surfaces of general type. We also find infinitely many moduli spaces having one component whose general point corresponds to a
canonically embedded surface and another component whose general point
corresponds to a surface whose canonical map is a degree 2 morphism.Comment: 32 pages. Final version with some simplifications and clarifications
in the exposition. To appear in Invent. Math. (the final publication is
available at springerlink.com
Quantum cryptography using balanced homodyne detection
We report an experimental quantum key distribution that utilizes balanced
homodyne detection, instead of photon counting, to detect weak pulses of
coherent light. Although our scheme inherently has a finite error rate, it
allows high-efficiency detection and quantum state measurement of the
transmitted light using only conventional devices at room temperature. When the
average photon number was 0.1, an error rate of 0.08 and "effective" quantum
efficiency of 0.76 were obtained.Comment: Errors in the sentence citing ref.[20] are correcte
Experimental and numerical validation of tape-based metasurfaces in guiding high-frequency surface waves for efficient power transfer
We present an effective method for transmitting electromagnetic waves as surface waves with a tape-based metasurface design. This design incorporates silver square patches periodically patterned on an adhesive tape substrate. Specifically, our study proposes a strategy to enhance the efficiency of power transfer in high-frequency bands by guiding signals as surface waves rather than free-space waves. Both the numerical and experimental results validate the markedly enhanced efficiency in power transfer of high-frequency signals compared to that achieved with conventional methods, such as wireless power transfer and microstrips. Importantly, our metasurface design can be readily manufactured and tailored for various environments. Thus, our study contributes to designing power-efficient next-generation communication systems such as 6G and 7G, which leverage high-frequency signals in the millimeter-wave and terahertz bands
First experimental determination of the radiative-decay probability of the 31− state in ¹²C for estimating the triple alpha reaction rate in high temperature environments
The triple alpha reaction is one of the most important reactions in the nuclear astrophysics. However, its reaction rate in high temperature environments at T₉>2 was still uncertain. One of the major origins of the uncertainty was that the radiative-decay probability of the 3⁻₁ state in ¹²C was unknown. In the present work, we have determined the radiative-decay probability of the 3⁻₁ state to be 1.3[+1.2][-1.1] × 10⁻⁶ by measuring the ¹H(¹²C, ¹²Cp) reaction for the first time, and derived the triple alpha reaction rate in high temperature environments from the measured radiative-decay probability. The present result suggests that the 3⁻₁ state noticeably enhances the triple alpha reaction rate although the contribution from the 3⁻₁ state had been assumed to be small
Measurement of differential cross sections for Σ⁺p elastic scattering in the momentum range 0.44–0.80 GeV/c
クォーク間の「芯」をとらえた --物質が安定して存在できる理由の理解に貢献--. 京都大学プレスリリース. 2022-09-05.We performed a novel Σ⁺+p scattering experiment at the J-PARC Hadron Experimental Facility. Approximately 2400 Σ⁺+p elastic scattering events were identified from 4.9 × 10⁷ tagged Σ⁺+ particles in the Σ⁺+ momentum range 0.44-0.80 GeV/c. The differential cross sections of the Σ⁺+p elastic scattering were derived with much better precision than in previous experiments. The obtained differential cross sections were approximately 2 mb/sr or less, which were not as large as those predicted by the fss2 and FSS models based on the quark cluster model in the short-range region. By performing phase-shift analyses for the obtained differential cross sections, we experimentally derived the phase shifts of the ³S₁ and ¹P₁ channels for the first time. The phase shift of the ³S₁ channel, where a large repulsive core was predicted owing to the Pauli effect between quarks, was evaluated as 20° < |δ₃S₁| < 35°. If the sign of δ₃S₁ is assumed to be negative, the interaction in this channel is moderately repulsive, as the Nijmegen extended-sort-core models predicted
Distinct Roles of ComK1 and ComK2 in Gene Regulation in Bacillus cereus
The B. subtilis transcriptional factor ComK regulates a set of genes coding for DNA uptake from the environment and for its integration into the genome. In previous work we showed that Bacillus cereus expressing the B. subtilis ComK protein is able to take up DNA and integrate it into its own genome. To extend our knowledge on the effect of B. subtilis ComK overexpression in B. cereus we first determined which genes are significantly altered. Transcriptome analysis showed that only part of the competence gene cluster is significantly upregulated. Two ComK homologues can be identified in B. cereus that differ in their respective homologies to other ComK proteins. ComK1 is most similar, while ComK2 lacks the C-terminal region previously shown to be important for transcription activation by B. subtilis ComK. comK1 and comK2 overexpression and deletion studies using transcriptomics techniques showed that ComK1 enhances and ComK2 decreases expression of the comG operon, when B. subtilis ComK was overexpressed simultaneously
The Role of the Frank–Starling Law in the Transduction of Cellular Work to Whole Organ Pump Function: A Computational Modeling Analysis
We have developed a multi-scale biophysical electromechanics model of the rat left ventricle at room temperature. This model has been applied to investigate the relative roles of cellular scale length dependent regulators of tension generation on the transduction of work from the cell to whole organ pump function. Specifically, the role of the length dependent Ca2+ sensitivity of tension (Ca50), filament overlap tension dependence, velocity dependence of tension, and tension dependent binding of Ca2+ to Troponin C on metrics of efficient transduction of work and stress and strain homogeneity were predicted by performing simulations in the absence of each of these feedback mechanisms. The length dependent Ca50 and the filament overlap, which make up the Frank-Starling Law, were found to be the two dominant regulators of the efficient transduction of work. Analyzing the fiber velocity field in the absence of the Frank-Starling mechanisms showed that the decreased efficiency in the transduction of work in the absence of filament overlap effects was caused by increased post systolic shortening, whereas the decreased efficiency in the absence of length dependent Ca50 was caused by an inversion in the regional distribution of strain
- …