106 research outputs found
Unity of CP and T Violation in Neutrino Oscillations
In a previous work a simultaneous P- CP[P] and P- T[P] bi-probability plot
was proposed as a useful tool for unified graphical description of CP and T
violation in neutrino oscillation. The ``baseball diamond'' structure of the
plot is understood as a consequence of the approximate CP-CP and the T-CP
relations obeyed by the oscillation probabilities. In this paper, we make a
step forward toward deeper understanding of the unified graphical
representation by showing that these two relations are identical in its
content, suggesting a truly unifying view of CP and T violation in neutrino
oscillations. We suspect that the unity reflects the underlying CPT theorem. We
also present calculation of corrections to the CP-CP and the T-CP relations to
leading order in Delta m^2_{21} / Delta m^2_{31} and s^2_{13}.Comment: 20 references added, version to appear in "Focus Issue on Neutrino
Physics" of New Journal of Physic
Neutrino-electron scattering in noncommutative space
Neutral particles can couple with the gauge field in the adjoint
representation at the tree level if the space-time coordinates are
noncommutative (NC). Considering neutrino-photon coupling in the NC QED
framework, we obtain the differential cross section of neutrino-electron
scattering. Similar to the magnetic moment effect, one of the NC terms is
proportional to , where is the electron recoil energy.
Therefore, this scattering provides a chance to achieve a stringent bound on
the NC scale in low energy by improving the sensitivity to the smaller electron
recoil energy.Comment: 12 pages, 2 figure
A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS
The OPERA collaboration has claimed evidence of superluminal {\nu}{_\mu}
propagation between CERN and the LNGS. Cohen and Glashow argued that such
neutrinos should lose energy by producing photons and e+e- pairs, through Z0
mediated processes analogous to Cherenkov radiation. In terms of the parameter
delta=(v^2_nu-v^2_c)/v^2_c, the OPERA result implies delta = 5 x 10^-5. For
this value of \delta a very significant deformation of the neutrino energy
spectrum and an abundant production of photons and e+e- pairs should be
observed at LNGS. We present an analysis based on the 2010 and part of the 2011
data sets from the ICARUS experiment, located at Gran Sasso National Laboratory
and using the same neutrino beam from CERN. We find that the rates and
deposited energy distributions of neutrino events in ICARUS agree with the
expectations for an unperturbed spectrum of the CERN neutrino beam. Our results
therefore refute a superluminal interpretation of the OPERA result according to
the Cohen and Glashow prediction for a weak current analog to Cherenkov
radiation. In particular no superluminal Cherenkov like e+e- pair or gamma
emission event has been directly observed inside the fiducial volume of the
"bubble chamber like" ICARUS TPC-LAr detector, setting the much stricter limit
of delta < 2.5 10^-8 at the 90% confidence level, comparable with the one due
to the observations from the SN1987A.Comment: 17 pages, 6 figure
Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry
We investigate supersymmetric scenarios in which neutrino masses are
generated by effective d=6 operators in the Kahler potential, rather than by
the standard d=5 superpotential operator. First, we discuss some general
features of such effective operators, also including SUSY-breaking insertions,
and compute the relevant renormalization group equations. Contributions to
neutrino masses arise at low energy both at the tree level and through finite
threshold corrections. In the second part we present simple explicit
realizations in which those Kahler operators arise by integrating out heavy
SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge,
depending on the mechanism and the scale of SUSY-breaking mediation. In
particular, we propose an appealing and economical picture in which the heavy
seesaw mediators are also messengers of SUSY breaking. In this case, strong
correlations exist among neutrino parameters, sparticle and Higgs masses, as
well as lepton flavour violating processes. Hence, this scenario can be tested
at high-energy colliders, such as the LHC, and at lower energy experiments that
measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section
Search for Electron Neutrino Appearance in a 250 km Long-baseline Experiment
We present a search for electron neutrino appearance from accelerator
produced muon neutrinos in the K2K long baseline neutrino experiment. One
candidate event is found in the data corresponding to an exposure of 4.8*10^19
protons on target. The expected background in the absence of neutrino
oscillations is estimated to be 2.4+-0.6 events and is dominated by
mis-identification of events from neutral current pi^0 production. We exclude
the \nu_\mu to \nu_e oscillations at 90% C.L. for the effective mixing angle in
2-flavor approximation of sin^2(2theta_\mu_e) (~= 1/2 sin^2 2 th_13) > 0.15 at
Delta m^2_\mu_e = 2.8*10^{-3} eV^2, the best fit value of the \nu_\mu
disappearance analysis in K2K. The most stringent limit of sin^2(2theta_\mu_e)
< 0.09 is obtained at Delta m^2_\mu_e = 6*10^{-3} eV^2.Comment: 5 pages with 2 figures embeded in two column revtex4 style. Accepted
to be published in Phys. Rev. Let
Majorana Neutrino Mixing
The most plausible see-saw explanation of the smallness of the neutrino
masses is based on the assumption that total lepton number is violated at a
large scale and neutrinos with definite masses are Majorana particles. In this
review we consider in details difference between Dirac and Majorana neutrino
mixing and possibilities of revealing Majorana nature of neutrinos with
definite masses
Experimental study of the atmospheric neutrino backgrounds for proton decay to positron and neutral pion searches in water Cherenkov detectors
The atmospheric neutrino background for proton decay to positron and neutral
pion in ring imaging water Cherenkov detectors is studied with an artificial
accelerator neutrino beam for the first time. In total, about 314,000 neutrino
events corresponding to about 10 megaton-years of atmospheric neutrino
interactions were collected by a 1,000 ton water Cherenkov detector (KT). The
KT charged-current single neutral pion production data are well reproduced by
simulation programs of neutrino and secondary hadronic interactions used in the
Super-Kamiokande (SK) proton decay search. The obtained proton to positron and
neutral pion background rate by the KT data for SK from the atmospheric
neutrinos whose energies are below 3 GeV is about two per megaton-year. This
result is also relevant to possible future, megaton-scale water Cherenkov
detectors.Comment: 13 pages, 16 figure
Search for coherent charged pion production in neutrino-carbon interactions
We report the result from a search for charged-current coherent pion
production induced by muon neutrinos with a mean energy of 1.3 GeV. The data
are collected with a fully active scintillator detector in the K2K
long-baseline neutrino oscillation experiment. No evidence for coherent pion
production is observed and an upper limit of is set on
the cross section ratio of coherent pion production to the total
charged-current interaction at 90% confidence level. This is the first
experimental limit for coherent charged pion production in the energy region of
a few GeV.Comment: 5 pages, 4 figure
Recent advances in neutrinoless double beta decay search
Even after the discovery of neutrino flavour oscillations, based on data from
atmospheric, solar, reactor, and accelerator experiments, many characteristics
of the neutrino remain unknown. Only the neutrino square-mass differences and
the mixing angle values have been estimated, while the value of each mass
eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is
still escaping. Neutrinoless double beta decay (-DBD) experimental
discovery could be the ultimate answer to some delicate questions of elementary
particle and nuclear physics. The Majorana description of neutrinos allows the
-DBD process, and consequently either a mass value could be measured or
the existence of physics beyond the standard should be confirmed without any
doubt. As expected, the -DBD measurement is a very difficult field of
application for experimentalists. In this paper, after a short summary of the
latest results in neutrino physics, the experimental status, the R&D projects,
and perspectives in -DBD sector are reviewed.Comment: 36 pages, 7 figures, To be publish in Czech Journal of Physic
Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3 GeV wide band muon neutrino beam
Neutral current single pi0 production induced by neutrinos with a mean energy
of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near
detector of the K2K long baseline neutrino experiment. The cross section for
this process relative to the total charged current cross section is measured to
be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of
produced pi0s is measured and is found to be in good agreement with an
expectation from the present knowledge of the neutrino cross sections.Comment: 6 pages, 4 figures, Submitted to Phys. Lett.
- …