2,031 research outputs found

    Electronic Structure of Pyrochlore Iridates: From Topological Dirac Metal to Mott Insulator

    Full text link
    In 5d transition metal oxides such as the iridates, novel properties arise from the interplay of electron correlations and spin-orbit interactions. We investigate the electronic structure of the pyrochlore iridates, (such as Y2_{2}Ir2_{2}O7_{7}) using density functional theory, LDA+U method, and effective low energy models. A remarkably rich phase diagram emerges on tuning the correlation strength U. The Ir magnetic moment are always found to be non-collinearly ordered. However, the ground state changes from a magnetic metal at weak U, to a Mott insulator at large U. Most interestingly, the intermediate U regime is found to be a Dirac semi-metal, with vanishing density of states at the Fermi energy. It also exhibits topological properties - manifested by special surface states in the form of Fermi arcs, that connect the bulk Dirac points. This Dirac phase, a three dimensional analog of graphene, is proposed as the ground state of Y2_{2}Ir2_{2}O7_{7} and related compounds. A narrow window of magnetic `axion' insulator, with axion parameter θ=π\theta=\pi, may also be present at intermediate U. An applied magnetic field induces ferromagnetic order and a metallic ground state.Comment: 7pages + 2pages appendices. 7 figures; see also viewpoint article by L. Balents, "Weyl Electrons Kiss", at Physics 4, 36 (2011

    Electron-ion and ion-ion potentials for modeling warm-dense-matter: applications to laser-heated or shock-compressed Al and Si

    Full text link
    The pair-interactions U_{ij}(r) determine the thermodynamics and linear transport properties of matter via the pair-distribution functions (PDFs), i.e., g_{ij}(r). Great simplicity is achieved if U_{ij}(r) could be directly used to predict material properties via classical simulations, avoiding many-body wavefunctions. Warm dense matter (WDM) is encountered in quasi-equilibria where the electron temperature TeT_e differs from the ion temperature T_i, as in laser-heated or in shock-compressed matter. The electron PDFs g_{ee}(r) as perturbed by the ions are used to evaluate fully non-local exchange-correlation corrections to the free energy, using Hydrogen as an example. Electron-ion potentials for ions with a bound core are discussed with Al and Si as examples, for WDM with T_e \ne T_i, and valid for times shorter than the electron-ion relaxation time. In some cases the potentials develop attractive regions, and then become repulsive and `Yukawa-like' for higher TeT_e. These results clarify the origin of initial phonon-hardening and rapid release. Pair-potentials for shock-heated WDM show that phonon hardening would not occur in most such systems. Defining meaningful quasi-equilibrium static transport coefficients consistent with the dynamic values is addressed. There seems to be no meaningful `static conductivity' obtainable by extrapolating experimental or theoretical \sigma(\omega, T_i, T_e) to \omega \to 0, unless T_i \to T_e as well. Illustrative calculations of quasi-static resistivities R(T_i,T_e) of laser-heated as well as shock-heated Aluminum and Silicon are presented using our pseudopotentials, pair-potentials and classical integral equations. The quasi-static resistivities display clear differences in their temperature evolutions, but are not the strict \omega \to 0 limits of the dynamic values.Comment: 12 pages, 6 figues, Latex file

    Absence of low-temperature dependence of the decay of 7Be and 198Au in metallic hosts

    Full text link
    The electron-capture (EC) decay rate of 7Be in metallic Cu host and the beta-decay rate of 198Au in the host alloy Al-Au have been measured simultaneously at several temperatures, ranging from 0.350 K to 293 K. No difference of the half-life of 198Au between 12.5 K and 293 K is observed to a precision of 0.1%. By utilizing the special characteristics of our double-source assembly, possible geometrical effects that influence the individual rates could be eliminated. The ratio of 7Be to 198Au activity thus obtained also remains constant for this temperatures range to the experimental precision of 0.15(0.16)%. The resulting null temperature dependence is discussed in terms of the inadequacy of the often-used Debye-Huckel model for such measurements.Comment: Four pages, three figures. Accepted for publication in Phys. Rev. C (Rapd Communications

    Self consistent theory of unipolar charge-carrier injection in metal/insulator/metal systems

    Full text link
    A consistent device model to describe current-voltage characteristics of metal/insulator/metal systems is developed. In this model the insulator and the metal electrodes are described within the same theoretical framework by using density of states distributions. This approach leads to differential equations for the electric field which have to be solved in a self consistent manner by considering the continuity of the electric displacement and the electrochemical potential in the complete system. The model is capable of describing the current-voltage characteristics of the metal/insulator/metal system in forward and reverse bias for arbitrary values of the metal/ insulator injection barriers. In the case of high injection barriers, approximations are provided offering a tool for comparison with experiments. Numerical calculations are performed exemplary using a simplified model of an organic semiconductor.Comment: 21 pages, 8 figure

    Properties of the Nearly Free Electron Superconductor Ag5Pb2O6 Inferred from Fermi Surface Measurements

    Full text link
    We measured the Fermi surface of the recently discovered superconductor Ag5Pb2O6 via a de Haas-van Alphen rotation study. Two frequency branches were observed and identified with the neck and belly orbits of a very simple, nearly free electron Fermi surface. We use the observed Fermi surface geometry to quantitatively deduce superconducting properties such as the in-plane and out-of-plane penetration depths, the coherence length in the clean limit, and the critical field; as well as normal state properties such as the specific heat and the resistivity anisotropy.Comment: 2 pages, 1 figure, submitted to Physica C (M2S Proceedings

    Netons: Vibrations of Complex Networks

    Full text link
    We consider atoms interacting each other through the topological structure of a complex network and investigate lattice vibrations of the system, the quanta of which we call {\em netons} for convenience. The density of neton levels, obtained numerically, reveals that unlike a local regular lattice, the system develops a gap of a finite width, manifesting extreme rigidity of the network structure at low energies. Two different network models, the small-world network and the scale-free network, are compared: The characteristic structure of the former is described by an additional peak in the level density whereas a power-law tail is observed in the latter, indicating excitability of netons at arbitrarily high energies. The gap width is also found to vanish in the small-world network when the connection range r=1r = 1.Comment: 9 pages, 6 figures, to appear in JP

    Fractional photon-assisted tunneling in an optical superlattice: large contribution to particle transfer

    Full text link
    Fractional photon-assisted tunneling is investigated both analytically and numerically for few interacting ultra-cold atoms in the double-wells of an optical superlattice. This can be realized experimentally by adding periodic shaking to an existing experimental setup [Phys. Rev. Lett. 101, 090404 (2008)]. Photon-assisted tunneling is visible in the particle transfer between the wells of the individual double wells. In order to understand the physics of the photon-assisted tunneling, an effective model based on the rotating wave approximation is introduced. The validity of this effective approach is tested for wide parameter ranges which are accessible to experiments in double-well lattices. The effective model goes well beyond previous perturbation theory approaches and is useful to investigate in particular the fractional photon-assisted tunneling resonances. Analytic results on the level of the experimentally realizable two-particle quantum dynamics show very good agreement with the numerical solution of the time-dependent Schr\"odinger equation. Far from being a small effect, both the one-half-photon and the one-third-photon resonance are shown to have large effects on the particle transfer.Comment: 9 pages, 11 png-figure

    Indirect coupling between spins in semiconductor quantum dots

    Full text link
    The optically induced indirect exchange interaction between spins in two quantum dots is investigated theoretically. We present a microscopic formulation of the interaction between the localized spin and the itinerant carriers including the effects of correlation, using a set of canonical transformations. Correlation effects are found to be of comparable magnitude as the direct exchange. We give quantitative results for realistic quantum dot geometries and find the largest couplings for one dimensional systems.Comment: 4 pages, 3 figure

    Application of the Lifshitz theory to poor conductors

    Get PDF
    The Lifshitz formula for the dispersive forces is generalized to the materials, which cannot be described with the local dielectric response. Principal nonlocality of poor conductors is related with the finite screening length of the penetrating field and the collisional relaxation; at low temperatures the role of collisions plays the Landau damping. The spatial dispersion makes the theory self consistent. Our predictions are compared with the recent experiment. It is demonstrated that at low temperatures the Casimir-Lifshitz entropy disappears as TT in the case of degenerate plasma and as T2T^2 for the nondegenerate one.Comment: Accepted for publication in PR
    • …
    corecore