14 research outputs found

    Cryptococcus Neoformans Modulates Extracellular Killing by Neutrophils

    Get PDF
    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (TgΞ΅26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike Candida albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. We monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the conditioned medium and found that pre-incubation with live but not β€œheat-killed” fungal cells significantly inhibits further killing activity of the medium. We then studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption–ionization tissue imaging in infected lung we found that similar to previous observations in the isogenic wild-type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells, but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells

    Sphingomyelin Synthases Regulate Protein Trafficking and Secretion

    Get PDF
    Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein, protein kinase D (PKD), to the Golgi. Since PKD recruitment to the Golgi has been implicated in cellular secretion through the trans golgi network (TGN), the effect of down-regulation of SMSs on TGN-to-plasma membrane trafficking was studied. Down regulation of either SMS1 or SMS2 significantly retarded trafficking of the reporter protein vesicular stomatitis virus G protein tagged with GFP (VSVG-GFP) from the TGN to the cell surface. Inhibition of SMSs also induced tubular protrusions from the trans Golgi network reminiscent of inhibited TGN membrane fission. Since a recent study demonstrated the requirement of PKD activity for insulin secretion in beta cells, we tested the function of SMS in this model. Inhibition of SMS significantly reduced insulin secretion in rat INS-1 cells. Taken together these results provide the first direct evidence that both enzymes (SMS1 and 2) are capable of regulating TGN-mediated protein trafficking and secretion, functions that are compatible with PKD being a down-stream target for SMSs in the Golgi

    Role of Sphingomyelin Synthase in Controlling the Antimicrobial Activity of Neutrophils against Cryptococcus neoformans

    Get PDF
    The key host cellular pathway(s) necessary to control the infection caused by inhalation of the environmental fungal pathogen Cryptococcus neoformans are still largely unknown. Here we have identified that the sphingolipid pathway in neutrophils is required for them to exert their killing activity on the fungus. In particular, using both pharmacological and genetic approaches, we show that inhibition of sphingomyelin synthase (SMS) activity profoundly impairs the killing ability of neutrophils by preventing the extracellular release of an antifungal factor(s). We next found that inhibition of protein kinase D (PKD), which controls vesicular sorting and secretion and is regulated by diacylglycerol (DAG) produced by SMS, totally blocks the extracellular killing activity of neutrophils against C. neoformans. The expression of SMS genes, SMS activity and the levels of the lipids regulated by SMS (namely sphingomyelin (SM) and DAG) are up-regulated during neutrophil differentiation. Finally, tissue imaging of lungs infected with C. neoformans using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS), revealed that specific SM species are associated with neutrophil infiltration at the site of the infection. This study establishes a key role for SMS in the regulation of the killing activity of neutrophils against C. neoformans through a DAG-PKD dependent mechanism, and provides, for the first time, new insights into the protective role of host sphingolipids against a fungal infection

    2-n-Pentyl-4-Quinolinol Produced by a Marine Alteromonas sp. and Its Potential Ecological and Biogeochemical Roles

    Get PDF
    Bacterium-bacterium interactions occur at intimate spatial scales on the order of micrometers, but our knowledge of interactions at this level is rudimentary. Antagonism is a potential interaction in such microenvironments. To study the ecological role of antibiosis, we developed a model system involving an antibiotic-producing isolate (SWAT5) derived from a marine particle and its dominant antibiotic product, 2-n-pentyl-4-quinolinol (PQ). This system was used to address questions about the significance of this antibiotic for microbial ecology and carbon cycling on particles. We characterized the chemical and inhibitory properties of PQ in relation to the mechanisms used by particle-associated bacteria in interacting with particles and with other attached bacteria. PQ was produced by SWAT5 only on surfaces. When SWAT5 was grown in polysaccharide matrices, PQ diffused within the matrices but not into the surrounding seawater. SWAT5 might thus be able to generate a localized zone of high antibiotic concentration on particles suspended or sinking through seawater. Target bacterial respiration was most sensitive to PQ (75 nM), while inhibition of DNA synthesis, protein synthesis, and bacterial motility required higher (micromolar) PQ levels. The presence of PQ altered the composition of the bacterial community that colonized and developed in a model particle system. PQ also inhibited Synechococcus and phytoplankton growth. Our results suggest that antibiosis may significantly influence community composition and activities of attached bacterial and thus regulate the biogeochemical fate of particulate organic matter in the ocean

    Atf2 Transcription Factor Binds to the APP1 Promoter in Cryptococcus neoformans: Stimulatory Effect of Diacylglycerolβ–Ώ

    No full text
    The fungus Cryptococcus neoformans is an environmental human pathogen which enters the lung via the respiratory tract and produces a unique protein, called antiphagocytic protein 1 (App1), that protects it from phagocytosis by macrophages. In previous studies, we proposed genetic evidences that transcription of APP1 is controlled by the enzymatic reaction catalyzed by inositol phosphorylceramide synthase 1 (Ipc1) via the production of diacylglycerol through the activating transcription factor 2 (Atf2). We investigated here the mechanism by which Atf2 binds to the APP1 promoter in vitro and in vivo. To this end, we produced Atf2 recombinant proteins (rAtf2) and found that rAtf2 binds to ATF cis-acting element present in the APP1 promoter. Indeed, mutation of two key nucleotides in the ATF consensus sequence abolishes the binding of rAtf2 to the APP1 promoter. Next, we produced C. neoformans strains with a hemagglutinin-tagged ATF2 gene and showed that endogenous Atf2 binds to APP1 promoter in vivo. Finally, by a novel DNA protein-binding precipitation assay, we showed that treatment with 1,2-dioctanoylglycerol positively increases binding of Atf2-APP1 promoter in vivo. These studies provide new insights into the molecular mechanism by which Atf2 regulates APP1 transcription in vivo with important implications for a better understanding of how C. neoformans escapes the phagocytic process
    corecore