2,045 research outputs found

    Detection of polarization from the E^4\Pi-A^4\Pi system of FeH in sunspot spectra

    Full text link
    Here we report the first detection of polarization signals induced by the Zeeman effect in spectral lines of the E^4\Pi-A^4\Pi system of FeH located around 1.6 μ\mum. Motivated by the tentative detection of this band in the intensity spectrum of late-type dwarfs, we have investigated the full Stokes sunspot spectrum finding circular and linear polarization signatures that we associate with the FeH lines of the E^4\Pi-A^4\Pi band system. We investigate the Zeeman effect in these molecular transitions pointing out that in Hund's case (a) coupling the effective Land\'e factors are never negative. For this reason, the fact that our spectropolarimetric observations indicate that the Land\'e factors of pairs of FeH lines have opposite signs, prompt us to conclude that the E^4\Pi-A^4\Pi system must be in intermediate angular momentum coupling between Hund's cases (a) and (b). We emphasize that theoretical and/or laboratory investigations of this molecular system are urgently needed for exploiting its promising diagnostic capabilities.Comment: 11 pages, 4 figures, accepted for publication in Astrophysical Journal Letter

    Uncertainties in the solar photospheric oxygen abundance

    Full text link
    The purpose of this work is to better understand the confidence limits of the photospheric solar oxygen abundance derived from three-dimensional models using the forbidden [OI] line at 6300 \AA , including correlations with other parameters involved. We worked with a three-dimensional empirical model and two solar intensity atlases. We employed Bayesian inference as a tool to determine the most probable value for the solar oxygen abundance given the model chosen. We considered a number of error sources, such as uncertainties in the continuum derivation, in the wavelength calibration and in the abundance/strength of Ni. Our results shows correlations between the effects of several parameters employed in the derivation. The Bayesian analysis provides robust confidence limits taking into account all of these factors in a rigorous manner. We obtain that, given the empirical three-dimensional model and the atlas observations employed here, the most probable value for the solar oxygen abundance is log(ϵO)=8.86±0.04\log(\epsilon_O) = 8.86\pm0.04. However, we note that this uncertainty does not consider possible sources of systematic errors due to the model choice.Comment: Accepted for publication in Astronomy and Astrophysic

    Penumbral thermal structure below the visible surface

    Full text link
    ContextContext. The thermal structure of the penumbra below its visible surface (i.e., τ51\tau_5 \ge 1) has important implications for our present understanding of sunspots and their penumbrae: their brightness and energy transport, mode conversion of magneto-acoustic waves, sunspot seismology, and so forth. AimsAims. We aim at determining the thermal stratification in the layers immediately beneath the visible surface of the penumbra: τ5[1,3]\tau_5 \in [1,3] (7080\approx 70-80 km below the visible continuum-forming layer). MethodsMethods. We analyzed spectropolarimetric data (i.e., Stokes profiles) in three Fe \textsc{i} lines located at 1565 nm observed with the GRIS instrument attached to the 1.5-meter solar telescope GREGOR. The data are corrected for the smearing effects of wide-angle scattered light and then subjected to an inversion code for the radiative transfer equation in order to retrieve, among others, the temperature as a function of optical depth T(τ5)T(\tau_5). ResultsResults. We find that the temperature gradient below the visible surface of the penumbra is smaller than in the quiet Sun. This implies that in the region τ51\tau_5 \ge 1 the penumbral temperature diverges from that of the quiet Sun. The same result is obtained when focusing only on the thermal structure below the surface of bright penumbral filaments. We interpret these results as evidence of a thick penumbra, whereby the magnetopause is not located near its visible surface. In addition, we find that the temperature gradient in bright penumbral filaments is lower than in granules. This can be explained in terms of the limited expansion of a hot upflow inside a penumbral filament relative to a granular upflow, as magnetic pressure and tension forces from the surrounding penumbral magnetic field hinder an expansion like this.Comment: 5 pages; 2 figures; accepted for publication in Astronomy and Astrophysics Letter

    Estimating the magnetic field strength from magnetograms

    Full text link
    A properly calibrated longitudinal magnetograph is an instrument that measures circular polarization and gives an estimation of the magnetic flux density in each observed resolution element. This usually constitutes a lower bound of the field strength in the resolution element, given that it can be made arbitrarily large as long as it occupies a proportionally smaller area of the resolution element and/or becomes more transversal to the observer and still produce the same magnetic signal. Yet, we know that arbitrarily stronger fields are less likely --hG fields are more probable than kG fields, with fields above several kG virtually absent-- and we may even have partial information about its angular distribution. Based on a set of sensible considerations, we derive simple formulae based on a Bayesian analysis to give an improved estimation of the magnetic field strength for magnetographs.Comment: 8 pages, 7 figures, accepted for publication in A&

    Near-IR internetwork spectro-polarimetry at different heliocentric angles

    Full text link
    The analysis of near infrared spectropolarimetric data at the internetwork at different regions on the solar surface could offer constraints to reject current modeling of these quiet areas. We present spectro-polarimetric observations of very quiet regions for different values of the heliocentric angle for the Fe I lines at 1.56 micron, from disc centre to positions close to the limb. The spatial resolution of the data is 0.7-1". We analyze direct observable properties of the Stokes profiles as the amplitude of circular and linear polarization as well as the total degree of polarization. Also the area and amplitude asymmetries are studied. We do not find any significant variation of the properties of the polarimetric signals with the heliocentric angle. This means that the magnetism of the solar internetwork remains the same regardless of the position on the solar disc. This observational fact discards the possibility of modeling the internetwork as a Network-like scenario. The magnetic elements of internetwork areas seem to be isotropically distributed when observed at our spatial resolution.Comment: Sorry, this is the version with the correct bibliography. Some figures had to be compressed. Accepted for publication in A&

    Spectropolarimetric analysis of an active region filament. I. Magnetic and dynamical properties from single component inversions

    Full text link
    The determination of the magnetic filed vector in solar filaments is possible by interpreting the Hanle and Zeeman effects in suitable chromospheric spectral lines like those of the He I multiplet at 10830 A. We study the vector magnetic field of an active region filament (NOAA 12087). Spectropolarimetric data of this active region was acquired with the GRIS instrument at the GREGOR telescope and studied simultaneously in the chromosphere with the He I 10830 A multiplet and in the photosphere with the Si I 10827 A line. As it is usual from previous studies, only a single component model is used to infer the magnetic properties of the filament. The results are put into a solar context with the help of the Solar Dynamic Observatory images. Some results clearly point out that a more complex inversion had to be done. Firstly, the Stokes VV map of He I does not show any clear signature of the presence of the filament. Secondly, the local azimuth map follows the same pattern than Stokes VV as if the polarity of Stokes VV were conditioning the inference to very different magnetic field even with similar linear polarization signals. This indication suggests that the Stokes VV could be dominated by the below magnetic field coming from the active region, and not, from the filament itself. Those and more evidences will be analyzed in depth and a more complex inversion will be attempted in the second part of this series.Comment: 18 pages, 19 figures, accepted for publication in A&
    corecore