211 research outputs found

    Methodology for the metric restoration of the historical cartography applied to Francisco Coello's cartografic series of the Royal Site of Aranjuez

    Get PDF
    Hojas Kilométricas (Kilometric Sheets). Specifically, the study focuses on those sheets referring to the city centre and surrounding area of the Royal Site of Aranjuez, a town in the south of the Province of Madrid. The aim of this study is to restore the actual size and measurements of scanned images of the Hojas Kilométricas. This would allow us, among other things, to reestablish both the format and scale of the original plans. To achieve this goal it is necessary to rectify and then georeference these images, i.e. assign them a geographic reference system. This procedure is essential in the overlaying and comparison of the Hojas Kilométricas of the Royal Site with other historical cartography as well as other sources related to the same area from different time periods. Subsequent research would allow us, for example, to reconstruct the time-evolution of the urban area, to spot new construction and to pinpoint the locations of any altered or missing buildings or architectural features. In addition, this would allow us to develop and integrate databases for GIS models applicable to the management of our cultural heritage

    Exponential improvement in photon storage fidelities using subradiance and "selective radiance" in atomic arrays

    Get PDF
    A central goal within quantum optics is to realize efficient interactions between photons and atoms. A fundamental limit in nearly all applications based on such systems arises from spontaneous emission, in which photons are absorbed by atoms and then re-scattered into undesired channels. In typical treatments of atomic ensembles, it is assumed that this re-scattering occurs independently, and at a rate given by a single isolated atom, which in turn gives rise to standard limits of fidelity in applications such as quantum memories or quantum gates. However, this assumption can be violated. In particular, spontaneous emission of a collective atomic excitation can be significantly suppressed through strong interference in emission. Thus far the physics underlying the phenomenon of subradiance and techniques to exploit it have not been well-understood. In this work, we provide a comprehensive treatment of this problem. First, we show that in ordered atomic arrays in free space, subradiant states acquire an interpretation in terms of optical modes that are guided by the array, which only emit due to scattering from the ends of the finite chain. We also elucidate the properties of subradiant states in the many-excitation limit. Finally, we introduce the new concept of selective radiance. Whereas subradiant states experience a reduced coupling to all optical modes, selectively radiant states are tailored to simultaneously radiate efficiently into a desired channel while scattering into undesired channels is suppressed, thus enabling an enhanced atom-light interface. We show that these states naturally appear in chains of atoms coupled to nanophotonic structures, and we analyze the performance of photon storage exploiting such states. We find that selectively radiant states allow for a photon storage error that scales exponentially better with number of atoms than previously known bounds.Comment: Fixed minor typos, is now analogous to published versio

    Subradiant states of quantum bits coupled to a one-dimensional waveguide

    Get PDF
    The properties of coupled emitters can differ dramatically from those of their individual constituents. Canonical examples include sub- and super-radiance, wherein the decay rate of a collective excitation is reduced or enhanced due to correlated interactions with the environment. Here, we systematically study the properties of collective excitations for regularly spaced arrays of quantum emitters coupled to a one-dimensional (1D) waveguide. We find that, for low excitation numbers, the modal properties are well-characterized by spin waves with a definite wavevector. Moreover, the decay rate of the most subradiant modes obeys a universal scaling with a cubic suppression in the number of emitters. Multi-excitation subradiant eigenstates can be built from fermionic combinations of single excitation eigenstates; such "fermionization" results in multiple excitations that spatially repel one another. We put forward a method to efficiently create and measure such subradiant states, which can be realized with superconducting qubits. These measurement protocols probe both real-space correlations (using on-site dispersive readout) and temporal correlations in the emitted field (using photon correlation techniques).Comment: 21 pages, 9 figure

    Population mixing due to dipole-dipole interactions in a 1D array of multilevel atoms

    Get PDF
    We examine theoretically how dipole-dipole interactions arising from multiple photon scattering lead to a modified distribution of ground state populations in a driven, ordered 1D array of multilevel atoms. Specifically, we devise a level configuration in which a ground-state population accumulated due solely to dipole-dipole interactions can be up to 20\% in regimes accessible to current experiments with neutral atom arrays. For much larger systems, the steady state can consist of an equal distribution of population across the ground state manifold. Our results illustrate how dipole-dipole interactions can be accentuated through interference, and regulated by the geometry of ordered atom arrays. More generally, control techniques for multilevel atoms that can be degraded by multiple scattering, such as optical pumping, will benefit from an improved understanding and control of dipole-dipole interactions available in ordered arrays.Comment: paper is now identical to published versio

    Optimization of photon storage fidelity in ordered atomic arrays

    Get PDF
    A major application for atomic ensembles consists of a quantum memory for light, in which an optical state can be reversibly converted to a collective atomic excitation on demand. There exists a well-known fundamental bound on the storage error, when the ensemble is describable by a continuous medium governed by the Maxwell-Bloch equations. The validity of this model can break down, however, in systems such as dense, ordered atomic arrays, where strong interference in emission can give rise to phenomena such as subradiance and "selective" radiance. Here, we develop a general formalism that finds the maximum storage efficiency for a collection of atoms with discrete, known positions, and a given spatial mode in which an optical field is sent. As an example, we apply this technique to study a finite two-dimensional square array of atoms. We show that such a system enables a storage error that scales with atom number NaN_\mathrm{a} like (logNa)2/Na2\sim (\log N_\mathrm{a})^2/N_\mathrm{a}^2, and that, remarkably, an array of just 4×44 \times 4 atoms in principle allows for an efficiency comparable to a disordered ensemble with optical depth of around 600.Comment: paper is now identical to published versio

    Dissipative stabilization of dark quantum dimers via squeezed vacuum

    Full text link
    Understanding the mechanism through which an open quantum system exchanges information with an environment is central to the creation and stabilization of quantum states. This theme has been explored recently, with attention mostly focused on system control or environment engineering. Here, we bring these ideas together to describe the many-body dynamics of an extended atomic array coupled to a squeezed vacuum. We show that fluctuations can drive the array into a pure dark state decoupled from the environment. The dark state is obtained for an even number of atoms and consists of maximally entangled atomic pairs, or dimers, that mimic the behavior of the squeezed field. Each pair displays reduced fluctuations in one polarization quadrature and amplified in another. This dissipation-induced stabilization relies on an efficient transfer of correlations between pairs of photons and atoms. It uncovers the mechanism through which squeezed light causes an atomic array to self-organize and illustrates the increasing importance of spatial correlations in modern quantum technologies where many-body effects play a central role
    corecore