78 research outputs found
Recommended from our members
Metal gettering by boron-silicide precipitates in boron-implanted silicon
We show that Fe, Co, Cu, and Au impurities in Si are strongly gettered to boron-silicide precipitates formed by supersaturation B implantation and annealing. Effective binding free energies relative to interstitial solution range form somewhat above 1 to more than 2 eV. The B-Si precipitates formed at temperatures {le}1100{degrees}C lack long range structural order but closely resemble and icosahedral B{sub 3}Si phase in composition, local bonding, and chemical potential. Evidence indicates that the metal atoms go into solution in the B-Si phase, and this is interpreted in terms of the novel bonding and structural characteristics of B-rich icosahedral compounds
Approaching disorder-free transport in high-mobility conjugated polymers.
Conjugated polymers enable the production of flexible semiconductor devices that can be processed from solution at low temperatures. Over the past 25 years, device performance has improved greatly as a wide variety of molecular structures have been studied. However, one major limitation has not been overcome; transport properties in polymer films are still limited by pervasive conformational and energetic disorder. This not only limits the rational design of materials with higher performance, but also prevents the study of physical phenomena associated with an extended π-electron delocalization along the polymer backbone. Here we report a comparative transport study of several high-mobility conjugated polymers by field-effect-modulated Seebeck, transistor and sub-bandgap optical absorption measurements. We show that in several of these polymers, most notably in a recently reported, indacenodithiophene-based donor-acceptor copolymer with a near-amorphous microstructure, the charge transport properties approach intrinsic disorder-free limits at which all molecular sites are thermally accessible. Molecular dynamics simulations identify the origin of this long sought-after regime as a planar, torsion-free backbone conformation that is surprisingly resilient to side-chain disorder. Our results provide molecular-design guidelines for 'disorder-free' conjugated polymers.We gratefully acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) through a programme grant (EP/G060738/1) and the Technology Strategy Board (TSB) (PORSCHED project). D. Venkateshvaran acknowledges financial support from the Cambridge Commonwealth Trust through a Cambridge International Scholarship. K. Broch acknowledges post-doctoral fellowship support from the German Research Foundation (DFG). Mateusz Zelazny acknowledges funding from the NanoDTC in Cambridge. The work in Mons was supported by the European Commission / Région Wallonne (FEDER – Smartfilm RF project), the Interuniversity Attraction Pole program of the Belgian Federal Science Policy Office (PAI 7/05), Programme d’Excellence de la Région Wallonne (OPTI2MAT project) and FNRS-FRFC. D.B. and J.C. are FNRS Research Fellows.This is the accepted manuscript. The final version's available from Nature at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13854.html
Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)
The basic known and hypothetic one- and two-element phases of the B-C-N-O
system (both superhard phases having diamond and boron structures and
precursors to synthesize them) are described. The attention has been given to
the structure, basic mechanical properties, and methods to identify and
characterize the materials. For some phases that have been recently described
in the literature the synthesis conditions at high pressures and temperatures
are indicated.Comment: Review on superhard B-C-N-O phase
Linking Distributive and Procedural Justice to Employee Engagement Through Social Exchange: A Field Study in India
Research linking justice perceptions to employee outcomes has referred to social exchange as its central theoretical premise. We tested a conceptual model linking distributive and procedural justice to employee engagement through social exchange mediators, namely, perceived organizational support and psychological contract, among 238 managers and executives from manufacturing and service sector firms in India. Findings suggest that perceived organizational support mediated the relationship between distributive justice and employee engagement, and both perceived organizational support and psychological contract mediated the relationship between procedural justice and employee engagement. Theoretical and practical implications with respect to organizational functions are discussed
State of the science: Alleviating mealtime difficulties in nursing home residents with dementia
Three million people will reside in nursing homes (NH) in the United States, and over 50% will experience some level of dementia by 2030. People with dementia become increasingly dependent on others to manage mealtime difficulties and oral intake as the disease progresses. The purpose of this review is to explore the state of the science related to assisted hand-feeding of people with dementia in the NH, identify gaps, and inform future policy. The review was conducted in 2010 and identified sources from journal articles, websites, and other related publications. Results are presented around key themes of characteristics, measurements, related factors, and interventions for alleviating mealtime difficulties in people with dementia. Though in the early stages, international and interdisciplinary research interest exists to understand mealtime difficulties and effective intervention strategies. Health care providers must be able to identify problems and intervene appropriately to alleviate mealtime difficulties. © 2011 Elsevier Inc
Recommended from our members
PdMn and PdFe: New Materials for Temperature Measurement Near 2K
Interest in the critical dynamics of superfluid 4 He in microgravity conditions has motivated the development of new high resolution thermometry technol- ogy for use in space experiments near 2K. The current material commonly used as the temperature sensing element for high resolution thermometers (HRTs) is copper ammonium bromide [Cu(NH4)2Br42H20) or "CAB", which undergoes a ferromagnetic phase transition at 1.8K1. HRTs made from CAB have demonstrated low drift (-13 K/s
- …