65 research outputs found
A Partner Evokes Latent Differences between Hox Proteins
Hox transcription factors bind highly related DNA sequences in vitro, yet they regulate different genes and play distinct roles in anterior-posterior patterning in animals. Slattery et al. report that a common cofactor, Exd, accentuates latent sequence specificities of all eight Hox proteins and directs binding to relevant sites across the genome
Temperature-sensitive protein–DNA dimerizers
Programmable DNA-binding polyamides coupled to short peptides have led to the creation of synthetic artificial transcription factors. A hairpin polyamide-YPWM tetrapeptide conjugate facilitates the binding of a natural transcription factor Exd to an adjacent DNA site. Such small molecules function as protein-DNA dimerizers that stabilize complexes at composite DNA binding sites. Here we investigate the role of the linker that connects the polyamide to the peptide. We find that a substantial degree of variability in the linker length is tolerated at lower temperatures. At physiological temperatures, the longest linker tested confers a "switch"-like property on the protein-DNA dimerizer, in that it abolishes the ability of the YPWM moiety to recruit the natural transcription factor to DNA. These observations provide design principles for future artificial transcription factors that can be externally regulated and can function in concert with the cellular regulatory circuitry
Minimization of a Protein−DNA Dimerizer
A protein−DNA dimerizer constructed from a DNA-binding polyamide and the peptide FYPWMKG facilitates the binding of a natural transcription factor Exd to an adjacent DNA site. The Exd binding domain can be reduced to a dipeptide WM attached to the polyamide through an ε-aminohexanoic acid linker with retention of protein−DNA dimerizer activity. Screening a library of analogues indicated that the tryptophan indole moiety is more important than methionine's side chain or the N-terminal acetamide. Remarkably, switching the stereochemistry of the tryptophan residue (l to d) stabilizes the dimerizer•Exd•DNA ternary complex at 37 °C. These observations provide design principles for artificial transcription factors that may function in concert with the cellular regulatory circuitry
Single position substitution of hairpin pyrrole-imidazole polyamides imparts distinct DNA-binding profiles across the human genome
Pyrrole–imidazole (Py–Im) polyamides are synthetic molecules that can be rationally designed to target specific DNA sequences to both disrupt and recruit transcriptional machinery. While in vitro binding has been extensively studied, in vivo effects are often difficult to predict using current models of DNA binding. Determining the impact of genomic architecture and the local chromatin landscape on polyamide-DNA sequence specificity remains an unresolved question that impedes their effective deployment in vivo. In this report we identified polyamide–DNA interaction sites across the entire genome, by covalently crosslinking and capturing these events in the nuclei of human LNCaP cells. This technique confirms the ability of two eight ring hairpin-polyamides, with similar architectures but differing at a single ring position (Py to Im), to retain in vitro specificities and display distinct genome-wide binding profiles
Single position substitution of hairpin pyrrole-imidazole polyamides imparts distinct DNA-binding profiles across the human genome
Pyrrole–imidazole (Py–Im) polyamides are synthetic molecules that can be rationally designed to target specific DNA sequences to both disrupt and recruit transcriptional machinery. While in vitro binding has been extensively studied, in vivo effects are often difficult to predict using current models of DNA binding. Determining the impact of genomic architecture and the local chromatin landscape on polyamide-DNA sequence specificity remains an unresolved question that impedes their effective deployment in vivo. In this report we identified polyamide–DNA interaction sites across the entire genome, by covalently crosslinking and capturing these events in the nuclei of human LNCaP cells. This technique confirms the ability of two eight ring hairpin-polyamides, with similar architectures but differing at a single ring position (Py to Im), to retain in vitro specificities and display distinct genome-wide binding profiles
Quantitative microarray profiling of DNA-binding molecules
A high-throughput Cognate Site Identity (CSI) microarray platform interrogating all 524 800 10-base pair variable sites is correlated to quantitative DNase I footprinting data of DNA binding pyrrole-imidazole polyamides. An eight-ring hairpin polyamide programmed to target the 5 bp sequence 5'-TACGT-3' within the hypoxia response element (HRE) yielded a CSI microarray-derived sequence motif of 5'-WWACGT-3' (W = A,T). A linear beta-linked polyamide programmed to target a (GAA)_3 repeat yielded a CSI microarray-derived sequence motif of 5'-AARAARWWG-3' (R = G,A). Quantitative DNase I footprinting of selected sequences from each microarray experiment enabled quantitative prediction of K_a values across the microarray intensity spectrum
Emerging Views on the CTD Code
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the “CTD code” hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a “code.” Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges
Toward artificial developmental regulators
A polyamide-peptide conjugate is designed which recruits sequence specifically the developmental regulator Exd to a cognate DNA site. In particular, an eight-ring hairpin polyamide (Im-Im-Py(C3H6NHR)-Py-gamma-Im-Py-Py-Py-beta-Dp) with a heptapeptide (R = Ac-Phe-Tyr-Pro-Trp-Met-Lys-Gly-) attached on a central ring was shown to induce cooperative binding of the Drosophila Hox protein cofactor Exd with a Kd of 4.4 nM in vitro, an order of magnitude more efficient than the natural Hox protein partner Ubx. The conjugate joins two sequence specific domains, one for DNA and one for the protein. This small molecule thus serves as a cooperative protein-DNA dimerizer, which mimics the natural Hox family of developmental regulators
- …