16 research outputs found
Identification of Command and Control Information Requirements for the Cyberspace Domain
The purpose of this research was to develop an information requirements analysis method that would provide the Director of Cyberspace Forces with the information required to support effective command and control of cyberspace. This research investigates the role of information in command and control, information in the traditional war fighting domains, cyberspace as a war fighting domain, and various methods of determining information requirements of organizations. This research produced an information requirements analysis method that is suitable for identifying the command and control information requirements of the Director of Cyberspace Forces
Disease staging of Alzheimer\u27s disease using a CSF-based biomarker model
Biological staging of individuals with Alzheimer\u27s disease (AD) may improve diagnostic and prognostic workup of dementia in clinical practice and the design of clinical trials. In this study, we used the Subtype and Stage Inference (SuStaIn) algorithm to establish a robust biological staging model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis involved 426 participants from BioFINDER-2 and was validated in 222 participants from the Knight Alzheimer Disease Research Center cohort. SuStaIn identified a singular biomarker sequence and revealed that five CSF biomarkers effectively constituted a reliable staging model (ordered: Aβ42/40, pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated mid-region tau). The CSF stages (0-5) demonstrated a correlation with increased abnormalities in other AD-related biomarkers, such as Aβ-PET and tau-PET, and aligned with longitudinal biomarker changes reflective of AD progression. Higher CSF stages at baseline were associated with an elevated hazard ratio of clinical decline. This study highlights a common molecular pathway underlying AD pathophysiology across all patients, suggesting that a single CSF collection can accurately indicate the presence of AD pathologies and characterize the stage of disease progression. The proposed staging model has implications for enhancing diagnostic and prognostic assessments in both clinical practice and the design of clinical trials
Evaluation of dose-dependent treatment effects after mid-trial dose escalation in biomarker, clinical, and cognitive outcomes for gantenerumab or solanezumab in dominantly inherited Alzheimer\u27s disease
INTRODUCTION: While the Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) was ongoing, external data suggested higher doses were needed to achieve targeted effects; therefore, doses of gantenerumab were increased 5-fold, and solanezumab was increased 4-fold. We evaluated to what extent mid-trial dose increases produced a dose-dependent treatment effect.
METHODS: Using generalized linear mixed effects (LME) models, we estimated the annual low- and high-dose treatment effects in clinical, cognitive, and biomarker outcomes.
RESULTS: Both gantenerumab and solanezumab demonstrated dose-dependent treatment effects (significant for gantenerumab, non-significant for solanezumab) in their respective target amyloid biomarkers (Pittsburgh compound B positron emission tomography standardized uptake value ratio and cerebrospinal fluid amyloid beta 42), with gantenerumab demonstrating additional treatment effects in some downstream biomarkers. No dose-dependent treatment effects were observed in clinical or cognitive outcomes.
CONCLUSIONS: Mid-trial dose escalation can be implemented as a remedy for an insufficient initial dose and can be more cost effective and less burdensome to participants than starting a new trial with higher doses, especially in rare diseases.
HIGHLIGHTS: We evaluated the dose-dependent treatment effect of two different amyloid-specific immunotherapies.Dose-dependent treatment effects were observed in some biomarkers.No dose-dependent treatment effects were observed in clinical/cognitive outcomes, potentially due to the fact that the modified study may not have been powered to detect such treatment effects in symptomatic subjects at a mild stage of disease exposed to high (or maximal) doses of medication for prolonged durations
A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease
Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn’s disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences. A systems biology-spatial analysis identified granuloma signatures in CD and interferon (IFN)-response signatures localising to T cell aggregates and epithelial damage in CD and UC. Pretreatment differences in epithelial and myeloid compartments were associated with remission outcomes in both diseases. Longitudinal comparisons demonstrated disease progression in nonremission: myeloid and T cell perturbations in CD and increased multi-cellular IFN signalling in UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a lymphoid pathotype. Our therapeutic atlas represents the largest cellular census of perturbation with the most common biologic treatment, anti-TNF, across multiple inflammatory diseases
Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer's disease
Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD +/- 8.5) years versus 54.8 (SD +/- 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-epsilon 4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD +/- 39.3) pg/ml dominantly inherited versus 296 (SD +/- 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles;sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design
Siderophore Receptor-Mediated Uptake of Lactivicin Analogues in Gram-Negative Bacteria
Multidrug-resistant Gram-negative
pathogens are an emerging threat
to human health, and addressing this challenge will require development
of new antibacterial agents. This can be achieved through an improved
molecular understanding of drug–target interactions combined
with enhanced delivery of these agents to the site of action. Herein
we describe the first application of siderophore receptor-mediated
drug uptake of lactivicin analogues as a strategy that enables the
development of novel antibacterial agents against clinically relevant
Gram-negative bacteria. We report the first crystal structures of
several sideromimic conjugated compounds bound to penicillin binding
proteins PBP3 and PBP1a from <i>Pseudomonas aeruginosa</i> and characterize the reactivity of lactivicin and β-lactam
core structures. Results from drug sensitivity studies with β-lactamase
enzymes are presented, as well as a structure-based hypothesis to
reduce susceptibility to this enzyme class. Finally, mechanistic studies
demonstrating that sideromimic modification alters the drug uptake
process are discussed
Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition
The thymic production of regulatory T cells (Treg cells) requires interleukin 2 (IL-2) and agonist T cell antigen receptor (TCR) ligands and is controlled by competition for a limited developmental niche, but the thymic sources of IL-2 and the factors that limit access to the niche are poorly understood. Here we found that IL-2 produced by antigen-bearing dendritic cells (DCs) had a key role in Treg cell development and that existing Treg cells limited new development of Treg cells by competing for IL-2. Our data suggest that antigen-presenting cells (APCs) that can provide both IL-2 and a TCR ligand constitute the thymic niche and that competition by existing Treg cells for a limited supply of IL-2 provides negative feedback for new production of Treg cells
Longitudinal clinical, cognitive and biomarker profiles in dominantly inherited versus sporadic early-onset Alzheimer’s disease
Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design
Gantenerumab in- depth outcomes
BackgroundGantenerumab is a humanized anti- amyloid- beta monoclonal antibody in clinical development for the treatment of several stages of Alzheimer disease (AD). Gantenerumab was evaluated in a phase 2/3 clinical trial program designed to evaluate its efficacy in autosomal dominant AD based on a combination of clinical and biomarker evidence.MethodThe study enrolled both mutation carriers (n=69 with 3:1 randomization of treatment (n=52) vs placebo (n=17)) and non- carriers (n=28, all on placebo) from 15 years before to 10 years after the expected age of onset inclusive. Patients were both asymptomatic (CDR 0 and MMSE >25) and symptomatic (CDR 0.5- 1 and MMSE >16). There were 41 asymptomatic and 28 symptomatic mutation carriers. The initial dose of gantenerumab was 225 mg monthly administered subcutaneously. The dose was titrated to 1200 mg/month following a protocol amendment based on the increased amyloid lowering seen at higher doses in the gantenerumab program in symptomatic AD. The treatment duration was a minimum of 4 years (range 48- 80 months). The primary outcome was change from baseline in the DIAN- TU multivariate cognitive endpoint. Secondary clinical outcomes included the DIAN- TU cognitive composite, Cogstate multivariate cognitive endpoint, CDR SB, and time to CDR progression of >0.5 points. Change from baseline in amyloid PET was the primary biomarker outcome. Other biomarker outcomes included MRI, tau PET, CSF amyloid, tau and phosphotau, and CSF and plasma neurofilament light (NfL). Safety outcomes including ARIA were compared between drug and placebo groups.ResultWe will report change from baseline on the DIAN- TU multivariate cognitive endpoint, DIAN- TU cognitive composite, CDR- SB and other secondary efficacy endpoints. We expect significant lowering on amyloid PET with PIB and florbetapir based on the results from recent anti- amyloid antibodies, including Gantenerumab, in sporadic AD. We will also present the results of change in other key imaging and fluid biomarkers. The frequency, duration, and severity of ARIA will be reported and compared with studies in sporadic AD.ConclusionThis clinical trial was designed to inform future for ADAD and will provide new insights on the role of amyloid reduction in both pre- symptomatic and clinical AD.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163780/1/alz038049.pd