1 research outputs found
Exact solution of Markovian master equations for quadratic fermi systems: thermal baths, open XY spin chains, and non-equilibrium phase transition
We generalize the method of third quantization to a unified exact treatment
of Redfield and Lindblad master equations for open quadratic systems of n
fermions in terms of diagonalization of 4n x 4n matrix. Non-equilibrium thermal
driving in terms of the Redfield equation is analyzed in detail. We explain how
to compute all physically relevant quantities, such as non-equilibrium
expectation values of local observables, various entropies or information
measures, or time evolution and properties of relaxation. We also discuss how
to exactly treat explicitly time dependent problems. The general formalism is
then applied to study a thermally driven open XY spin 1/2 chain. We find that
recently proposed non-equilibrium quantum phase transition in the open XY chain
survives the thermal driving within the Redfield model. In particular, the
phase of long-range magnetic correlations can be characterized by
hypersensitivity of the non-equilibrium-steady state to external (bath or bulk)
parameters. Studying the heat transport we find negative thermal conductance
for sufficiently strong thermal driving, as well as non-monotonic dependence of
the heat current on the strength of the bath coupling.Comment: 24 pages, 12 figures, submitted to New Journal of Physics, Focus
issue "Quantum Information and Many-Body Theory