25 research outputs found

    Dual-time-point FDG PET/CT imaging in prosthetic heart valve endocarditis

    Get PDF
    Purpose: FDG PET/CT has been of increasing interest in the diagnostic workup of prosthetic heart valve endocarditis (PVE). Some reports advocate later imaging time points to improve the diagnostic accuracy for PVE. In this study, we compared standard and late FDG PET/CT images in patients with a clinical suspicion of PVE. Materials and Methods: Fourteen scans in 13 patients referred for FDG PET/CT for suspicion of PVE performed at standard (60 min post injection) and late (150 min post injection) time points were scored based on visual interpretation and semi-quantitatively with SUVmax and target-to-background ratio (TBR, defined as [SUVmax valve/SUVmean blood pool]). Final diagnosis was based on surgical findings in all cases of infection (n = 6) and unremarkable follow-up in all others (n = 8). Results: Late images were more prone to false positive interpretation for both visual and semi-quantitative analyses. Visual analysis of the standard images yielded 1 false negative and 1 false positive result. On the late images, no scans were false negative but 5 scans were false positive. Conclusion: Late FDG PET/CT imaging for PVE seem

    Normal imaging findings after aortic valve implantation on 18F-Fluorodeoxyglucose positron emission tomography with computed tomography

    Get PDF
    Background: To determine the normal perivalvular 18F-Fluorodeoxyglucose (18F-FDG) uptake on positron emission tomography (PET) with computed tomography (CT) within one year after aortic prosthetic heart valve (PHV) implantation. Methods: Patients with uncomplicated aortic PHV implantation were prospectively included and underwent 18F-FDG PET/CT at either 5 (± 1) weeks (group 1), 12 (± 2) weeks (group 2) or 52 (± 8) weeks (group 3) after implantation. 18F-FDG uptake around the PHV was scored qualitatively (none/low/intermediate/high) and quantitatively by measuring the maximum Standardized Uptake Value (SUVmax) and target to background ratio (SUVratio). Results: In total, 37 patients (group 1: n = 12, group 2: n = 12, group 3: n = 13) (mean age 66 ± 8 years) were prospectively included. Perivalvular 18F-FDG uptake was low (8/12 (67%)) and intermediate (4/12 (33%)) in group 1, low (7/12 (58%)) and intermediate (5/12 (42%)) in group 2, and low (8/13 (62%)) and intermediate (5/13 (38%)) in group 3 (P = 0.91). SUVmax was 4.1 ± 0.7, 4.6 ± 0.9 and 3.8 ± 0.7 (mean ± SD, P = 0.08), and SUVratio was 2.0 [1.9 to 2.2], 2.0 [1.8 to 2.6], and 1.9 [1.7 to 2.0] (median [IQR], P = 0.81) for groups 1, 2, and 3, respectively. Conclusion: Non-infected aortic PHV have similar low to intermediate perivalvular 18F-FDG uptake with similar SUVmax and SUVratio at 5, 12, and 52 weeks after implantation

    Added value of 18F-FDG-PET/CT and cardiac CTA in suspected transcatheter aortic valve endocarditis

    Get PDF
    Backgrounds: Transcatheter-implanted aortic valve infective endocarditis (TAVI-IE) is difficult to diagnose when relying on the Duke Criteria. Our aim was to assess the additional diagnostic value of 18F-fluorodeoxyglucose (18F-FDG) positron emission/computed tomography (PET/CT) and cardiac computed tomography angiography (CTA) in suspected TAVI-IE. Methods: A multicenter retrospective analysis was performed in all patients who underwent 18F-FDG-PET/CT and/or CTA with suspected TAVI-IE. Patients were first classified with Duke Criteria and after adding 18F-FDG-PET/CT and CTA, they were classified with European Society of Cardiology (ESC) criteria. The final diagnosis was determined by our Endocarditis Team based on ESC guideline recommendations. Results: Thirty patients with suspected TAVI-IE were included. 18F-FDG-PET/CT was performed in all patients and Cardiac CTA in 14/30. Using the Modified Duke Criteria, patients were classified as 3% rejected (1/30), 73% possible (22/30), and 23% definite (7/30) TAVI-IE. Adding 18F-FDG-PET/CT and CTA supported the reclassification of 10 of the 22 possible cases as “definite TAVI-IE” (5/22) or “rejected TAVI-IE” (5/22). This changed the final diagnosis to 20% rejected (6/30), 40% possible (12/30), and 40% definite (12/30) TAVI-IE. Conclusions: Addition of 18F-FDG-PET/CT and/or CTA changed the final diagnosis in 33% of patients and proved to be a valuable diagnostic tool in patients with suspected TAVI-IE

    Added value of 18F-FDG-PET/CT and cardiac CTA in suspected transcatheter aortic valve endocarditis

    Get PDF
    Backgrounds: Transcatheter-implanted aortic valve infective endocarditis (TAVI-IE) is difficult to diagnose when relying on the Duke Criteria. Our aim was to assess the additional diagnostic value of 18F-fluorodeoxyglucose (18F-FDG) positron emission/computed tomography (PET/CT) and cardiac computed tomog

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Additional Heparin Preadministration Improves Cardiac Glucose Metabolism Suppression over Low-Carbohydrate Diet Alone in ¹⁸F-FDG PET Imaging

    No full text
    Adequate suppression of cardiac glucose metabolism increases the interpretability and diagnostic reliability of (18)F-FDG PET studies performed to detect cardiac inflammation and infection. There are no standardized guidelines, though prolonged fasting (>6 h), carbohydrate-restricted diets, fatty meals, and heparin loading all have been proposed. The aim of this study was to compare the 3 preparatory protocols used in our institution. METHODS: (18)F-FDG PET scans were selected and grouped according to 3 preparatory protocols (50 consecutive scans per group): 6-h fast (group 1), low-carbohydrate diet plus 12-h fast (group 2), and low-carbohydrate diet plus 12-h fast plus intravenous heparin preadministration (50 IU/kg) (group 3). Consecutive scans were retrospectively included from time frames during which the particular protocol was used. Group 1 included oncologic indications, and groups 2 and 3 infection or inflammation detection. Cardiac segments for which inflammation or infection foci had been confirmed on other imaging modalities were excluded from the analysis. (18)F-FDG uptake in normal myocardium was scored according to a scale ranging from 0 (uptake less than that in left ventricle blood pool) to 4 (diffuse uptake greater than that in liver). Adequate suppression was defined as uptake less than that in liver and without any focus (scores 0-2). RESULTS: Adequate suppression differed significantly between groups: 28% in group 1, 54% in group 2, and 88% in group 3 (P< 0.0001 for all comparisons). CONCLUSION: Single-dose heparin administration before (18)F-FDG PET in addition to a low-carbohydrate diet significantly outperforms a low-carbohydrate diet alone in adequately suppressing cardiac glucose metabolism
    corecore