4 research outputs found

    Mechanochemical Mechanism for Fast Reaction of Metastable Intermolecular Composites Based on Dispersion of Liquid Metal

    Get PDF
    An unexpected mechanism for fast reaction of Al nanoparticles covered by a thin oxide shell during fast heating is proposed and justified theoretically and experimentally. For nanoparticles, the melting of Al occurs before the oxide fracture. The volume change due to melting induces pressures of 1–2 GPa and causes dynamic spallation of the shell. The unbalanced pressure between the Al core and the exposed surface creates an unloading wave with high tensile pressures resulting in dispersion of atomic scale liquid Al clusters. These clusters fly at high velocity and their reaction is not limited by diffusion (this is the opposite of traditional mechanisms for micron particles and for nanoparticles at slow heating). Physical parameters controlling the melt dispersion mechanism are found by our analysis. In addition to an explanation of the extremely short reaction time, the following correspondence between our theory and experiments are obtained: (a) For the particle radius below some critical value, the flame propagation rate and the ignition time delay are independent of the radius; (b) damage of the oxide shell suppresses the melt dispersion mechanism and promotes the traditional diffusive oxidation mechanism; (c) nanoflakes react more like micron size (rather than nanosize) spherical particles. The reasons why the melt dispersion mechanism cannot operate for the micron particles or slow heating of nanoparticles are determined. Methods to promote the melt dispersion mechanism, to expand it to micron particles, and to improve efficiency of energetic metastable intermolecular composites are formulated. In particular, the following could promote the melt dispersion mechanism in micron particles: (a) Increasing the temperature at which the initial oxide shell is formed; (b) creating initial porosity in the Al; (c) mixing of the Al with a material with a low (even negative) thermal expansion coefficient or with a phase transformation accompanied by a volume reduction; (d) alloying the Al to decrease the cavitation pressure; (e) mixing nano- and micron particles; and (f) introducing gasifying or explosive inclusions in any fuel and oxidizer. A similar mechanism is expected for nitridation and fluorination of Al and may also be tailored for Ti and Mg fuel

    Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates

    Get PDF
    DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together
    corecore