24 research outputs found

    Gradient-based parameter optimization method to determine membrane ionic current composition in human induced pluripotent stem cell-derived cardiomyocytes

    Get PDF
    Premature cardiac myocytes derived from human induced pluripotent stem cells (hiPSC-CMs) show heterogeneous action potentials (APs), probably due to different expression patterns of membrane ionic currents. We developed a method for determining expression patterns of functional channels in terms of whole-cell ionic conductance (Gx) using individual spontaneous AP configurations. It has been suggested that apparently identical AP configurations can be obtained using different sets of ionic currents in mathematical models of cardiac membrane excitation. If so, the inverse problem of Gx estimation might not be solved. We computationally tested the feasibility of the gradient-based optimization method. For a realistic examination, conventional 'cell-specific models' were prepared by superimposing the model output of AP on each experimental AP recorded by conventional manual adjustment of Gxs of the baseline model. Gxs of 4–6 major ionic currents of the 'cell-specific models' were randomized within a range of ± 5–15% and used as an initial parameter set for the gradient-based automatic Gxs recovery by decreasing the mean square error (MSE) between the target and model output. Plotting all data points of the MSE–Gx relationship during optimization revealed progressive convergence of the randomized population of Gxs to the original value of the cell-specific model with decreasing MSE. The absence of any other local minimum in the global search space was confirmed by mapping the MSE by randomizing Gxs over a range of 0.1–10 times the control. No additional local minimum MSE was obvious in the whole parameter space, in addition to the global minimum of MSE at the default model parameter

    Nerve Regeneration and Gait Function Recovery with Implantation of Glucose/Mannose Conduits Using a Rat Model: Efficacy of Glucose/Mannose as a New Neurological Guidance Material

    No full text
    Therapy with clinical nerve guidance conduits often causes functional incompleteness in patients. With the aim of better therapeutic efficacy, nerve regeneration and gait function were investigated in this study using a novel nerve guidance conduit consisting of glucose/mannose. The glucose/mannose nerve guidance conduits were prepared by filling the conduits with the glucose/mannose aqueous solutions for different kinematic viscosity, which were applied to sciatic nerve defects (6 mm gap) in a rat model. The nerve regeneration effect and the gait function recovery with the fabricated nerve guidance conduits were examined. From the results of the XRD measurement, the glucose/mannose conduits were identified as crystal structures of cellulose type II. Young’s modulus and the maximum tensile strength of the crystalline glucose/mannose conduits demonstrated good strength and softness for the human nerve. Above 4 weeks postoperative, macroscopic observation revealed that the nerve was regenerated in the defective area. In various staining results of the nerve tissue removed at 4 weeks postoperative, myelinated nerves contributing to gait function could not be observed in the proximal and distal sites to the central nerve. At 8–12 weeks postoperative, myelinated nerves were found at the proximal and distal sites in hematoxylin/eosin staining. Glia cells were confirmed by phosphotungstic acid–hematoxylin staining. Continuous nerve fibers were observed clearly in the sections of the regenerated nerves towards the longitudinal direction at 12 weeks postoperative. The angle between the metatarsophalangeal joint and the ground plane was approximately 93° in intact rats. At 4 weeks postoperative, walking was not possible, but at 8 weeks postoperative, the rats were able to walk, with an angle of 53°. At 12 weeks postoperative, the angle increased further, reaching 65°, confirming that the rats were able to walk more quickly than at 8 weeks postoperative. These results demonstrated that gait function in rats treated with glucose/mannose nerve guidance conduits was rapidly recovered after 8 weeks postoperative. The glucose/mannose nerve guidance conduit could be applied as a new promising candidate material for peripheral nerve regeneration

    Functional Reconstruction of Denervated Muscle by Xenotransplantation of Neural Cells from Porcine to Rat

    No full text
    Neural cell transplantation targeting peripheral nerves is a potential treatment regime for denervated muscle atrophy. This study aimed to develop a new therapeutic technique for intractable muscle atrophy by the xenotransplantation of neural stem cells derived from pig fetuses into peripheral nerves. In this study, we created a denervation model using neurotomy in nude rats and transplanted pig-fetus-derived neural stem cells into the cut nerve stump. Three months after transplantation, the survival of neural cells, the number and area of regenerated axons, and the degree of functional recovery by electrical stimulation of peripheral nerves were compared among the gestational ages (E 22, E 27, E 45) of the pigs. Transplanted neural cells were engrafted at all ages. Functional recovery by electric stimulation was observed at age E 22 and E 27. This study shows that the xenotransplantation of fetal porcine neural stem cells can restore denervated muscle function. When combined with medical engineering, this technology can help in developing a new therapy for paralysis

    A Therapeutic Strategy for Lower Motor Neuron Disease and Injury Integrating Neural Stem Cell Transplantation and Functional Electrical Stimulation in a Rat Model

    No full text
    Promising treatments for upper motor neuron disease are emerging in which motor function is restored by brain–computer interfaces and functional electrical stimulation. At present, such technologies and procedures are not applicable to lower motor neuron disease. We propose a novel therapeutic strategy for lower motor neuron disease and injury integrating neural stem cell transplantation with our new functional electrical stimulation control system. In a rat sciatic nerve transection model, we transplanted embryonic spinal neural stem cells into the distal stump of the peripheral nerve to reinnervate denervated muscle, and subsequently demonstrated that highly responsive limb movement similar to that of a healthy limb could be attained with a wirelessly powered two-channel neurostimulator that we developed. This unique technology, which can reinnervate and precisely move previously denervated muscles that were unresponsive to electrical stimulation, contributes to improving the condition of patients suffering from intractable diseases of paralysis and traumatic injury
    corecore