7 research outputs found

    Evaluation of Atmospheric Effects on Interferograms Using DEM Errors of Fixed Ground Points

    No full text
    High-resolution synthetic aperture radar (SAR) data are widely used for disaster monitoring. To extract damaged areas automatically, it is essential to understand the relationships among the sensor specifications, acquisition conditions, and land cover. Our previous studies developed a method for estimating the phase noise of interferograms using several pairs of TerraSAR-X series (TerraSAR-X and TanDEM-X) datasets. Atmospheric disturbance data are also necessary to interpret the interferograms; therefore, the purpose of this study is to estimate the atmospheric effects by focusing on the difference in digital elevation model (DEM) errors between repeat-pass (two interferometric SAR images acquired at different times) and single-pass (two interferometric SAR images acquired simultaneously) interferometry. Single-pass DEM errors are reduced due to the lack of temporal decorrelation and atmospheric disturbances. At a study site in the city of Tsukuba, a quantitative analysis of DEM errors at fixed ground objects shows that the atmospheric effects are estimated to contribute 75% to 80% of the total phase noise in interferograms

    EVALUATION ANALYSIS FOR DIGITAL TERRAIN MODELS GENERATED FROM ALOS/PRISM -OB2 DATA

    No full text

    Evaluation of the Trend of Deformation around the Kanto Region Estimated Using the Time Series of PALSAR-2 Data

    No full text
    In the Kanto region of Japan, a large quantity of natural gas is dissolved in brine. The large-scale production of gas and iodine in the region has caused large-scale land subsidence in the past. Therefore, continuous and accurate monitoring for subsidence using satellite remote sensing is essential to prevent extreme subsidence and ensure the safety of residences. This study focused on the small baseline subset (SBAS) method to assess ground deformation trends around the Kanto region. Data for the SBAS method was acquired by the Advanced Land Observing Satellite (ALOS)-2 Phased Array type L-band Synthetic Aperture Radar (PALSAR)-2 from 2015 to 2019. A comparison of our results with reference levelling data shows that the SBAS method underestimates displacement. We corrected our results using linear regression and determined the maximum displacement around the Kujyukuri area to be approximately 20 mm/year; the mean displacement rate for 2015–2019 was −7.9 ± 2.9 mm/year. These values exceed those obtained using past PALSAR observations owing to the horizontal displacement after the Great East Japan Earthquake of 2011. Moreover, fewer points were acquired, and the root mean-squared error of each time-series displacement value was larger in our results. Further analysis is needed to address these bias errors

    Simultaneous Observation Data of GB-SAR/PiSAR to Detect Flooding in an Urban Area

    No full text
    <p>Abstract</p> <p>We analyzed simultaneous observation data with ground-based synthetic aperture radar (GB-SAR) and airborne SAR (PiSAR) over a flood test site at which a simple house was constructed in a field. The PiSAR <inline-formula> <graphic file="1687-6180-2010-560512-i1.gif"/></inline-formula> under flood condition was 0.9 to 3.4&#8201;dB higher than that under nonflood condition. GB-SAR gives high spatial resolution as we could identify a single scattering component and a double bounce component from the house. GB-SAR showed that the <inline-formula> <graphic file="1687-6180-2010-560512-i2.gif"/></inline-formula> difference between the flooding and nonflooding conditions came from the double bounce scattering. We also confirm that the entropy is a sensitive parameter in the eigenvalue decomposition parameters, if the scattering process is dominated by the double bounce scattering. We conclude that <inline-formula> <graphic file="1687-6180-2010-560512-i3.gif"/></inline-formula> and entropy are a good parameter to be used to detect flooding, not only in agricultural and forest regions, but also in urban areas. We also conclude that GB-SAR is a powerful tool to supplement satellite and airborne observation, which has a relatively low spatial resolution.</p

    Size control and vacuum-ultraviolet fluorescence of nanosized KMgF3 single crystals prepared using femtosecond laser pulses

    No full text
    We fabricated nanosized KMgF3 single crystals via a dry pulsed laser ablation process using femtosecond laser pulses. The sizes, shapes, and crystallographic properties of the crystals were evaluated by transmission electron microscopy (TEM). Almost all of the particles were spherical with diameters of less than 100 nm, and they were not highly agglomerated. Selected-area electron diffraction and high-resolution TEM analyses showed that the particles were single crystals. Particle diameter was controlled within a wide range by adjusting the Ar ambient gas pressure. Under low gas pressures (1 and 10 Pa), relatively small particles (primarily 10 nm or less) were observed with a high number density. With increasing pressure, the mean diameter increased and the number density drastically decreased. Vacuum-ultraviolet cathodoluminescence was observed at 140–230 nm with blue shift and broadening of spectrum
    corecore