21 research outputs found

    Dr. Neurosymbolic, or: How I Learned to Stop Worrying and Accept Statistics

    Full text link
    The symbolic AI community is increasingly trying to embrace machine learning in neuro-symbolic architectures, yet is still struggling due to cultural barriers. To break the barrier, this rather opinionated personal memo attempts to explain and rectify the conventions in Statistics, Machine Learning, and Deep Learning from the viewpoint of outsiders. It provides a step-by-step protocol for designing a machine learning system that satisfies a minimum theoretical guarantee necessary for being taken seriously by the symbolic AI community, i.e., it discusses "in what condition we can stop worrying and accept statistical machine learning." Unlike most textbooks which are written for students trying to specialize in Stat/ML/DL and willing to accept jargons, this memo is written for experienced symbolic researchers that hear a lot of buzz but are still uncertain and skeptical. Information on Stat/ML/DL is currently too scattered or too noisy to invest in. This memo prioritizes compactness, citations to old papers (many in early 20th century), and concepts that resonate well with symbolic paradigms in order to offer time savings. It prioritizes general mathematical modeling and does not discuss any specific function approximator, such as neural networks (NNs), SVMs, decision trees, etc. Finally, it is open to corrections. Consider this memo as something similar to a blog post taking the form of a paper on Arxiv.Comment: 12 pages of main contents, 29 pages in total. It could also serve as an accompanying material for Latplan paper. (arXiv:2107.00110) v2: rewrote the general ELBO derivation without Prolog. v3: significantly extended the Bayesian reasoning section in the appendix, with several proofs for conjugate priors. v4+: errata fi

    Learning Neural-Symbolic Descriptive Planning Models via Cube-Space Priors: The Voyage Home (to STRIPS)

    Full text link
    We achieved a new milestone in the difficult task of enabling agents to learn about their environment autonomously. Our neuro-symbolic architecture is trained end-to-end to produce a succinct and effective discrete state transition model from images alone. Our target representation (the Planning Domain Definition Language) is already in a form that off-the-shelf solvers can consume, and opens the door to the rich array of modern heuristic search capabilities. We demonstrate how the sophisticated innate prior we place on the learning process significantly reduces the complexity of the learned representation, and reveals a connection to the graph-theoretic notion of "cube-like graphs", thus opening the door to a deeper understanding of the ideal properties for learned symbolic representations. We show that the powerful domain-independent heuristics allow our system to solve visual 15-Puzzle instances which are beyond the reach of blind search, without resorting to the Reinforcement Learning approach that requires a huge amount of training on the domain-dependent reward information.Comment: Accepted in IJCAI 2020 main track (accept ratio 12.6%). The prequel of this paper, "The Search for STRIPS", can be found here: arXiv:1912.05492 . (update, 2020/08/11) We expanded the related work sectio

    Deep Neuroevolution of Recurrent and Discrete World Models

    Get PDF
    Neural architectures inspired by our own human cognitive system, such as the recently introduced world models, have been shown to outperform traditional deep reinforcement learning (RL) methods in a variety of different domains. Instead of the relatively simple architectures employed in most RL experiments, world models rely on multiple different neural components that are responsible for visual information processing, memory, and decision-making. However, so far the components of these models have to be trained separately and through a variety of specialized training methods. This paper demonstrates the surprising finding that models with the same precise parts can be instead efficiently trained end-to-end through a genetic algorithm (GA), reaching a comparable performance to the original world model by solving a challenging car racing task. An analysis of the evolved visual and memory system indicates that they include a similar effective representation to the system trained through gradient descent. Additionally, in contrast to gradient descent methods that struggle with discrete variables, GAs also work directly with such representations, opening up opportunities for classical planning in latent space. This paper adds additional evidence on the effectiveness of deep neuroevolution for tasks that require the intricate orchestration of multiple components in complex heterogeneous architectures
    corecore