25 research outputs found

    High-absorption curcumin reduces BNP in hypertensive heart disease

    Get PDF
    Aims Hypertension is a strong risk factor for heart failure with preserved ejection fraction. Curcumin has p300-specific histone acetyltransferase inhibitory activity, suppresses cardiomyocyte hypertrophy and fibrosis, and significantly reduces myocardial brain natriuretic peptide (BNP) expression without altering blood pressure in a rat model of hypertensive heart disease. This double-blind, placebo-controlled, randomized study, for the first time, aimed to examine the efficacy of a high-absorption curcumin for the prevention of hypertensive heart disease in humans. Methods and results Patients exhibiting initial signs of hypertensive heart disease with left ventricular ejection fraction ≥60% and stable blood pressure <140/90 mmHg orally took a double-blinded capsule (either a 90 mg curcumin capsule or placebo) twice daily for 24 weeks. The primary endpoint was per cent changes in left ventricular diastolic function (E/E′) from baseline to 6 months after administration. The secondary endpoint was the per cent change in plasma BNP levels. The E/E′ ratio per cent change from baseline to 6 months after administration was similar between the placebo (n = 69) and the curcumin (n = 73) groups. The per cent change in plasma BNP levels was significantly lower in the curcumin group than in the placebo group. In patients <65 years, BNP per cent changes were significantly lower in the curcumin group than in the placebo group, but similar between groups in ≥65 years (<65 vs. ≥65 years: P for interaction = 0.011). Conclusions A high-absorption curcumin agent did not affect the E/E′ ratio, rather it significantly inhibited the increase in plasma BNP levels in patients with initial signs of hypertensive heart disease

    Gingival bleeding and pocket depth among smokers and the related changes after short-term smoking cessation

    Get PDF
    Background: Smoking is associated with the deteriorating health of the gingiva and periodontium. The long-term beneficial effects of smoking cessation on oral health are well known. However, the effects of short-term smoking cessation on gingival bleeding and periodontal pocket depth are unknown. The purpose of the present study was to determine the effects of short-term smoking cessation on gingival bleeding and periodontal pocket depth. Methods: Dentate smokers with a mean age of 56.9 ± 14.4 years at an outpatient smoking cessation clinic participated in this study. A professional dentist checked the periodontal pocket depth and gingival bleeding. Patients visited the smoking cessation clinic on their first visit and 2, 4, 8, and 12 weeks (three months). The gingival assessment was re-performed in those who succeeded in smoking cessation 3 months after the baseline. Results: The baseline data of 83 patients showed that an increase in pocket depth was associated with increasing age and the amount of smoking. A significant increase in gingival bleeding (p = .031) and increase in pocket depth (p = .046) were observed 3 months after the baseline in patients who successfully quit smoking (n = 14). Conclusion: Short-term smoking cessation increased periodontal pocket depth and gingival bleeding. These findings may reflect healing processes that occur in the healthy gingiva. Implications: Study findings will be useful to advise patients during smoking cessation programs. Dentists can inform patients that an initial increase in gingival bleeding and pocket depth could be associated with smoking cessation. Such advice will prevent patients from any apprehension that may cause them to recommence smoking

    Development of an atmospheric Cherenkov imaging camera for the CANGAROO-III experiment

    Get PDF
    A Cherenkov imaging camera for the CANGAROO-III experiment has been developed for observations of gamma-ray induced air-showers at energies from 1011^{11} to 1014^{14} eV. The camera consists of 427 pixels, arranged in a hexagonal shape at 0.17^\circ intervals, each of which is a 3/4-inch diameter photomultiplier module with a Winston-cone--shaped light guide. The camera was designed to have a large dynamic range of signal linearity, a wider field of view, and an improvement in photon collection efficiency compared with the CANGAROO-II camera. The camera, and a number of the calibration experiments made to test its performance, are described in detail in this paper.Comment: 25 pages, 29 figures, elsart.cls, to appear in NIM-

    コウコウド ニ オケル カイゾウガタ チェレンコフ ボウエンキョウ ニ ヨル コウエネルギー ガンマセン カンソク ノ ケンキュウ

    No full text
    京都大学0048新制・課程博士博士(理学)甲第11174号理博第2842号新制||理||1425(附属図書館)22758UT51-2004-U417京都大学大学院理学研究科物理学・宇宙物理学専攻(主査)教授 谷森 達, 教授 小山 勝二, 教授 今井 憲一学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDA

    Element (SPE),

    No full text
    The Cell Broadband Engine Architecture (CBEA) is a novel microprocessor architecture designed to provide power-efficient and cost-effective high-performance processing for some of the world’s most demanding applications, including next generation game consoles. Applications that show special promise of benefiting from CBEA are medical imaging, security and surveillance, digital media, entertainment, communications, and selected scientific workloads. A medical imaging application for 3D CT image reconstruction, which is one of our application studies for the new architecture, is a good example to demonstrate the unique capabilities of CBEA. However, the programming scheme of CBEA is different from a single-core architecture. In this paper, we describe the parallelization of the 3D image reconstruction algorithm on CBEA. The results show that CBEA is viable for 3D CT image reconstruction and results in run time savings

    Intracerebroventricular Administration of C-Type Natriuretic Peptide Suppresses Food Intake via Activation of the Melanocortin System in Mice.

    Get PDF
    C-type natriuretic peptide (CNP) and its receptor are abundantly distributed in the brain, especially in the arcuate nucleus (ARC) of the hypothalamus associated with regulating energy homeostasis. To elucidate the possible involvement of CNP in energy regulation, we examined the effects of intracerebroventricular administration of CNP on food intake in mice. The intracerebroventricular administration of CNP-22 and CNP-53 significantly suppressed food intake on 4-h refeeding after 48-h fasting. Next, intracerebroventricular administration of CNP-22 and CNP-53 significantly decreased nocturnal food intake. The increment of food intake induced by neuropeptide Y and ghrelin was markedly suppressed by intracerebroventricular administration of CNP-22 and CNP-53. When SHU9119, an antagonist for melanocortin-3 and melanocortin-4 receptors, was coadministered with CNP-53, the suppressive effect of CNP-53 on refeeding after 48-h fasting was significantly attenuated by SHU9119. Immunohistochemical analysis revealed that intracerebroventricular administration of CNP-53 markedly increased the number of c-Fos-positive cells in the ARC, paraventricular nucleus, dorsomedial hypothalamus, ventromedial hypothalamic nucleus, and lateral hypothalamus. In particular, c-Fos-positive cells in the ARC after intracerebroventricular administration of CNP-53 were coexpressed with α-melanocyte-stimulating hormone immunoreactivity. These results indicated that intracerebroventricular administration of CNP induces an anorexigenic action, in part, via activation of the melanocortin system
    corecore