121 research outputs found

    Small Complete Minors Above the Extremal Edge Density

    Full text link
    A fundamental result of Mader from 1972 asserts that a graph of high average degree contains a highly connected subgraph with roughly the same average degree. We prove a lemma showing that one can strengthen Mader's result by replacing the notion of high connectivity by the notion of vertex expansion. Another well known result in graph theory states that for every integer t there is a smallest real c(t) so that every n-vertex graph with c(t)n edges contains a K_t-minor. Fiorini, Joret, Theis and Wood conjectured that if an n-vertex graph G has (c(t)+\epsilon)n edges then G contains a K_t-minor of order at most C(\epsilon)log n. We use our extension of Mader's theorem to prove that such a graph G must contain a K_t-minor of order at most C(\epsilon)log n loglog n. Known constructions of graphs with high girth show that this result is tight up to the loglog n factor

    Exact Bounds for Some Hypergraph Saturation Problems

    Full text link
    Let W_n(p,q) denote the minimum number of edges in an n x n bipartite graph G on vertex sets X,Y that satisfies the following condition; one can add the edges between X and Y that do not belong to G one after the other so that whenever a new edge is added, a new copy of K_{p,q} is created. The problem of bounding W_n(p,q), and its natural hypergraph generalization, was introduced by Balogh, Bollob\'as, Morris and Riordan. Their main result, specialized to graphs, used algebraic methods to determine W_n(1,q). Our main results in this paper give exact bounds for W_n(p,q), its hypergraph analogue, as well as for a new variant of Bollob\'as's Two Families theorem. In particular, we completely determine W_n(p,q), showing that if 1 <= p <= q <= n then W_n(p,q) = n^2 - (n-p+1)^2 + (q-p)^2. Our proof applies a reduction to a multi-partite version of the Two Families theorem obtained by Alon. While the reduction is combinatorial, the main idea behind it is algebraic

    Color-Critical Graphs Have Logarithmic Circumference

    Get PDF
    A graph G is k-critical if every proper subgraph of G is (k-1)-colorable, but the graph G itself is not. We prove that every k-critical graph on n vertices has a cycle of length at least log n/(100log k), improving a bound of Alon, Krivelevich and Seymour from 2000. Examples of Gallai from 1963 show that the bound cannot be improved to exceed 2(k-1)log n/log(k-2). We thus settle the problem of bounding the minimal circumference of k-critical graphs, raised by Dirac in 1952 and Kelly and Kelly in 1954
    • …
    corecore