26 research outputs found

    Asymptotics of Transmit Antenna Selection: Impact of Multiple Receive Antennas

    Full text link
    Consider a fading Gaussian MIMO channel with NtN_\mathrm{t} transmit and NrN_\mathrm{r} receive antennas. The transmitter selects LtL_\mathrm{t} antennas corresponding to the strongest channels. For this setup, we study the distribution of the input-output mutual information when NtN_\mathrm{t} grows large. We show that, for any NrN_\mathrm{r} and LtL_\mathrm{t}, the distribution of the input-output mutual information is accurately approximated by a Gaussian distribution whose mean grows large and whose variance converges to zero. Our analysis depicts that, in the large limit, the gap between the expectation of the mutual information and its corresponding upper bound, derived by applying Jensen's inequality, converges to a constant which only depends on NrN_\mathrm{r} and LtL_\mathrm{t}. The result extends the scope of channel hardening to the general case of antenna selection with multiple receive and selected transmit antennas. Although the analyses are given for the large-system limit, our numerical investigations indicate the robustness of the approximated distribution even when the number of antennas is not large.Comment: 6 pages, 4 figures, ICC 201

    On Robustness of Massive MIMO Systems Against Passive Eavesdropping under Antenna Selection

    Full text link
    In massive MIMO wiretap settings, the base station can significantly suppress eavesdroppers by narrow beamforming toward legitimate terminals. Numerical investigations show that by this approach, secrecy is obtained at no significant cost. We call this property of massive MIMO systems `secrecy for free' and show that it not only holds when all the transmit antennas at the base station are employed, but also when only a single antenna is set active. Using linear precoding, the information leakage to the eavesdroppers can be sufficiently diminished, when the total number of available transmit antennas at the base station grows large, even when only a fixed number of them are selected. This result indicates that passive eavesdropping has no significant impact on massive MIMO systems, regardless of the number of active transmit antennas.Comment: 7 pages, 2 figures; To be presented in IEEE Global Communications Conference (Globecom) 2018 in Abu Dhabi, UA

    Optimal Number of Transmit Antennas for Secrecy Enhancement in Massive MIMOME Channels

    Full text link
    This paper studies the impact of transmit antenna selection on the secrecy performance of massive MIMO wiretap channels. We consider a scenario in which a multi-antenna transmitter selects a subset of transmit antennas with the strongest channel gains. Confidential messages are then transmitted to a multi-antenna legitimate receiver while the channel is being overheard by a multi-antenna eavesdropper. For this setup, we approximate the distribution of the instantaneous secrecy rate in the large-system limit. The approximation enables us to investigate the optimal number of selected antennas which maximizes the asymptotic secrecy throughput of the system. We show that increasing the number of selected antennas enhances the secrecy performance of the system up to some optimal value, and that further growth in the number of selected antennas has a destructive effect. Using the large-system approximation, we obtain the optimal number of selected antennas analytically for various scenarios. Our numerical investigations show an accurate match between simulations and the analytic results even for not so large dimensions.Comment: 6 pages, 4 figures, IEEE GLOBECOM 201
    corecore