6 research outputs found

    Two-year follow-up of Helicobacter pylori infection in C57BL/6 and Balb/cA mice

    Get PDF
    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. We previously found high-grade lymphoma after 13 months' H. pylori infection in C57BL/6 mice. In this study we followed H. pylori infection by three different isolates in C57BL/6 and Balb/cA mice for 23 months. Six-week-old C57BL/6 and Balb/cA mice were infected with H. pylori strains 119p (CagA+, VacA+), SS1 (CagA+, VacA+) and G50 (CagA-, VacA-). Mice were followed at 2 weeks, 10 weeks and 23 months post-inoculation (p.i.) by culture, histopathology and serology. Strain G50 was only reisolated from mice 2 weeks p.i. There was no difference in colonization between strain 119p and SS1 at 10 weeks p.i., whereas SS1 gave 100% colonization versus 119p gave 50% 23 months p.i.. Interestingly, the inflammation score was higher in mice infected with strain 119p than with SS1 10-week p.i., and there were lymphoepithelial lesions in mice infected with strain 119p and G50 but not with SS1 at 23 months post-infection. Eight mice infected with strains 119p and G50 developed gastric lymphoma (grade 5 and 4). One C57BL/6 mouse infected with strain 119p developed hepatocellular carcinoma after 23 months. Immunoblot showed specific bands of 2633 kDa against H. pylori in infected mice, and two mice infected with strain SSI reacted with antibodies to the 120 kDa CagA toxin. Conclusion: A reproducible animal model for H. pylori-induced lymphoma and possibly hepatocellular carcinoma is described. Strain diversity may lead to different outcomes of H. pylori infection

    Characterization of the Protein-Sinthesis Dependent Adaptive Acid Tolerance Response in Lactobacillus acidophilus

    No full text
    Exposure of L. acidophilus CRL 639 cells to sublethal adaptive acid conditions (pH 5.0 for 60 min) was found to confer protection against subsequent exposure to lethal pH (pH 3.0). Adaptation, which only occurred in complex media, was dependent on de novo protein synthesis and was inhibited by amino acid analogues. There was no modification in the protein synthesis rate during adaptation, but the protein degradation rate decreased. Synthesis of acid stress proteins may increase the stability of pre-existing proteins. By 2D-PAGE, induction of nine acid stress proteins and repression of several housekeeping proteins was observed. Putative heat shock proteins DnaK, DnaJ, GrpE, GroES and GroEL (70, 43, 24, 10 and 55 kDa, respectively) were among the proteins whose synthesis was induced in response to acid adaptation.Fil: Lorca, Graciela L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Lund University; SueciaFil: Font, Graciela Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Ljungh, Asa. Lund University; Sueci

    Comparative chemical and biological characterization of the lipopolysaccharides of gastric and enterohepatic helicobacters

    No full text
    Background. The lipopolysaccharide of Helicobacter pylori plays an important role in colonization and pathogenicity. The present study sought to compare structural and biological features of lipopolysaccharides from gastric and enterohepatic Helicobacter spp. not previously characterized. Materials and methods. Purified lipopolysaccharides from four gastric Helicobacter spp. (H. pylori, Helicobacter felis, Helicobacter bizzozeronii and Helicobacter mustelae) and four enterohepatic Helicobacter spp. (Helicobacter hepaticus, Helicobacter bilis, \u27Helicobacter sp. flexispira\u27 and Helicobacter pullorum) were structurally characterized using electrophoretic, serological and chemical methods. Results. Structural insights into all three moieties of the lipopolysaccharides, i.e. lipid A, core and O-polysaccharide chains, were gained. All species expressed lipopolysaccharides bearing an O-polysaccharide chain, but H. mustelae and H. hepaticus produced truncated semirough lipopolysaccharides. However, in contrast to lipopolysaccharides of H. pylori and H. mustelae, no blood group mimicry was detected in the other Helicobacter spp. examined. Intra-species, but not interspecies, fatty acid profiles of lipopolysaccharides were identical within the genus. Although shared lipopolysaccharide-core epitopes with H. pylori occurred, differing structural characteristics were noted in this lipopolysaccharide region of some Helicobacter spp. The lipopolysaccharides of the gastric helicobacters, H. bizzozeronii and H. mustelae, had relative Limulus amoebocyte lysate activities which clustered around that of H. pylori lipopolysaccharide, whereas H. bilis, \u27Helicobacter sp. flexispira\u27 and H. hepaticus formed a cluster with approximately 1000-10,000-fold lower activities. H. pullorum lipopolysaccharide had the highest relative Limulus amoebocyte lysate activity of all the helicobacter lipopolysaccharides (10-fold higher than that of H. pylori lipopolysaccharide), and all the lipopolysaccharides of enterohepatic Helicobacter spp. were capable of inducing nuclear factor-Kappa B(NF-kappaB) activation. Conclusions. The collective results demonstrate the structural heterogeneity and pathogenic potential of lipopolysaccharides of the Helicobacter genus as a group and these differences in lipopolysaccharides may be indicative of adaptation of the bacteria to different ecological niches
    corecore