5 research outputs found

    Etiology of Secondary Caries in Prosthodontic Treatments

    Get PDF
    When preparing prosthetic restorations, dentists always try to create restorations functionally ideal while not compromising on esthetics. The factors that make a restoration successful include how well they fit both internally and marginally, their ability to withstand punishment without breaking, and their visual appeal. Imperfect marginal adaptation can lead to unpleasant and unwanted side effects such as plaque accumulation, marginal discoloration, microleakage, carious and endodontic lesions, and periodontal disease. If there is a gap between the crown and the prepared tooth, this can result in the dissolution of the luting material. If the fit of the restoration and the thickness of the cement are designed to be favorable, the cement is not dissolved and the abutment tooth is prevented from secondary caries. The marginal fit of the restorations is considerably affected by the materials and techniques used when making dental crowns. This chapter contains reviews on marginal fitting and caries

    In vitro cytotoxicity of indirect composite resins: Effect of storing in artificial saliva

    Full text link
    Aim: The aim of this study was to compare the cytotoxic effects of two indirect composite resins (Artglass and Solidex) on the viability of L-929 fibroblast cells at different incubation periods by storing them in artificial saliva (AS). Materials and Methods: Disk-shaped test samples were prepared according to manufacturers′ instructions. Test materials were cured with light source (Dentacolor XS, Heraus Kulzer, Germany). The samples were divided into two groups. The first group′s samples were transferred into a culture medium for 1 hour, 24 hours, 72 hours, 1 week and 2 weeks. The other group′s samples were transferred into a culture medium for 1 hours, 24 hours, 72 hours, 1 week, and 2 weeks after being stored in AS for 48 hours. The eluates were obtained and pipetted for evaluation onto L-929 mouse fibroblast cultures incubated for 24 hours. Measurements were performed by MTT (3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The degree of cytotoxicity for each sample was determined according to the reference values represented by the cells with a control group. Results: Statistical significance was determined by ANOVA. Both groups presented lower cell viability in comparison to the control group at all periods. Storing in artificial saliva reduced cytotoxicity significantly (P < 0.05). Stored Artglass and Solidex showed similar effects on cytotoxicity. Nonstored Solidex samples were found more cytotoxic than Artglass samples. The cell survival rate results of 24-hour incubation period were significantly lower than those of the other experimental periods (P < 0.05). Conclusion: Storing indirect composite resins in AS may reduce cytotoxic effects on the fibroblast cells. However, resin-based dental materials continue to release sufficient components to cause cytotoxic effects in vitro after 48 hours of storing in AS

    Influence of Surface Finish on Flexural Strength and Microhardness of Indirect Resin Composites and the Effect of Thermal Cycling

    Full text link
    This study investigated the effect of surface finish and thermal cycling procedures on flexural strength and surface microhardness of three indirect resin composites, Artglass (R), Signum (R), and Solidex (R). The specimens were prepared in sufficient number and size according to flexural and microhardness test requirements (n=10). Scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analysis was also used for studying the morphology, dispersion, and elemental compositions of fillers. The EDX results showed that Artglass contained 1.57% aluminium oxide (Al2O3), 53.29% silicon dioxide (SiO2), and 2.62% barium oxide (BaO); Signum had 55.69% silicon dioxide (SiO2) and Solidex had 44.99% silicon dioxide (SiO2) of total mass. Artglass appeared to display the best flexural strength values under all the test conditions employed (range: 116.8 +/- 32.18 to 147.8 +/- 47.97 MPa), and it was followed by Signum (range: 93.7 +/- 22.84 to 118.0 +/- 33.45 MPa). Thermal cycling did not seem to have affected the flexural strength of Artglass and Signum (p > 0.05); however, it led to a significant decrease, from (110.5 +/- 20.69 MPa) to 74.0 +/- 13.30 MPa (p < 0.001), in the strength of polished Solidex specimens. While surface microhardness of the three materials increased by polishing ( Artglass: 55.7 +/- 2.64/74.1 +/- 8.63 Vickers Hardness Numbers (VHN); Signum: 44.8 +/- 3.12/60.7 +/- 4.50 VHN; Solidex: 44.0 +/- 2.31/53.4 +/- 3.58 VHN for unpolished/polpolished specimens), thermal cycling had a deleterious effect on this property (p < 0.001)

    Influence of Surface Finish on Flexural Strength and Microhardness of Indirect Resin Composites and the Effect of Thermal Cycling

    Full text link
    This study investigated the effect of surface finish and thermal cycling procedures on flexural strength and surface microhardness of three indirect resin composites, Artglass (R), Signum (R), and Solidex (R). The specimens were prepared in sufficient number and size according to flexural and microhardness test requirements (n=10). Scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analysis was also used for studying the morphology, dispersion, and elemental compositions of fillers. The EDX results showed that Artglass contained 1.57% aluminium oxide (Al2O3), 53.29% silicon dioxide (SiO2), and 2.62% barium oxide (BaO); Signum had 55.69% silicon dioxide (SiO2) and Solidex had 44.99% silicon dioxide (SiO2) of total mass. Artglass appeared to display the best flexural strength values under all the test conditions employed (range: 116.8 +/- 32.18 to 147.8 +/- 47.97 MPa), and it was followed by Signum (range: 93.7 +/- 22.84 to 118.0 +/- 33.45 MPa). Thermal cycling did not seem to have affected the flexural strength of Artglass and Signum (p > 0.05); however, it led to a significant decrease, from (110.5 +/- 20.69 MPa) to 74.0 +/- 13.30 MPa (p < 0.001), in the strength of polished Solidex specimens. While surface microhardness of the three materials increased by polishing ( Artglass: 55.7 +/- 2.64/74.1 +/- 8.63 Vickers Hardness Numbers (VHN); Signum: 44.8 +/- 3.12/60.7 +/- 4.50 VHN; Solidex: 44.0 +/- 2.31/53.4 +/- 3.58 VHN for unpolished/polpolished specimens), thermal cycling had a deleterious effect on this property (p < 0.001)
    corecore