1 research outputs found

    Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence

    Get PDF
    Background: Detection of heart failure with preserved ejection fraction (HFpEF) involves integration of multiple imaging and clinical features which are often discordant or indeterminate. Objectives: We applied artificial intelligence (AI) to analyze a single apical four-chamber (A4C) transthoracic echocardiogram videoclip to detect HFpEF. Methods: A three-dimensional convolutional neural network was developed and trained on A4C videoclips to classify patients with HFpEF (diagnosis of HF, EF≥50%, and echocardiographic evidence of increased filling pressure; cases) versus without HFpEF (EF≥50%, no diagnosis of HF, normal filling pressure; controls). Model outputs were classified as HFpEF, no HFpEF, or non-diagnostic (high uncertainty). Performance was assessed in an independent multi-site dataset and compared to previously validated clinical scores. Results: Training and validation included 2971 cases and 3785 controls (validation holdout, 16.8% patients), and demonstrated excellent discrimination (AUROC:0.97 [95%CI:0.96-0.97] and 0.95 [0.93-0.96] in training and validation, respectively). In independent testing (646 cases, 638 controls), 94 (7.3%) were non-diagnostic; sensitivity (87.8%; 84.5-90.9%) and specificity (81.9%; 78.2-85.6%) were maintained in clinically relevant subgroups, with high repeatability and reproducibility. Of 701 and 776 indeterminate outputs from the HFA-PEFF and H2FPEF scores, the AI HFpEF model correctly reclassified 73.5 and 73.6%, respectively. During follow-up (median [IQR]:2.3 [0.5-5.6] years), 444 (34.6%) patients died; mortality was higher in patients classified as HFpEF by AI (hazard ratio [95%CI]:1.9 [1.5-2.4]). Conclusion: An AI HFpEF model based on a single, routinely acquired echocardiographic video demonstrated excellent discrimination of patients with versus without HFpEF, more often than clinical scores, and identified patients with higher mortality
    corecore