2 research outputs found

    Preliteracy signatures of poor-reading abilities in resting-state EEG

    Get PDF
    The hereditary character of dyslexia suggests the presence of putative underlying neural anomalies already in preliterate age. Here, we investigated whether early neurophysiological correlates of future reading difficulties—a hallmark of dyslexia—could be identified in the resting-state EEG of preliterate children. The children in this study were recruited at birth and classified on the basis of parents’ performance on reading tests to be at-risk of becoming poor readers (n = 48) or not (n = 14). Eyes-open rest EEG was measured at the age of 3 years, and the at-risk children were divided into fluent readers (n = 24) and non-fluent readers (n = 24) after reading assessment at their third grade of school. We found that fluent readers and non-fluent readers differed in normalized spectral amplitude. Non-fluent readers were characterized by lower amplitude in the delta-1 frequency band (0.5–2 Hz) and higher amplitude in the alpha-1 band (6–8 Hz) in multiple scalp regions compared to control and at-risk fluent readers. Interestingly, across groups these EEG biomarkers correlated with several behavioral test scores measured in the third grade. Specifically, the performance on reading fluency, phonological and orthographic tasks and rapid automatized naming task correlated positively with delta-1 and negatively with alpha-1. Together, our results suggest that combining family-risk status, neurophysiological testing and behavioral test scores in a longitudinal setting may help uncover physiological mechanisms implicated with neurodevelopmental disorders such as the predisposition to reading disabilities

    Cognitive training for children with ADHD: a randomized controlled trial of cogmed working memory training and ‘paying attention in class’

    No full text
    The goal of this randomized controlled trial was to replicate and extend previous studies of Cogmed Working Memory Training (CWMT) in children with ADHD. While a large proportion of children with ADHD suffer from academic difficulties, only few previous efficacy studies have taken into account long term academic outcome measures. So far, results regarding academic outcome measures have been inconsistent. Hundred and two children with ADHD between the age of 8 and 12 years (both medicated and medication naïve) participated in current randomized controlled trial. Children were randomly assigned to CWMT or a new active combined working memory- and executive function compensatory training called ‘Paying Attention in Class’. Primary outcome measures were neurocognitive functioning and academic performance. Secondary outcome measures contained ratings of behavior in class, behavior problems and quality of life. Assessment took place before, directly after and six months after treatment. Results showed only one replicated treatment effect on visual spatial working memory in favor of CWMT. Effects of time were found for broad neurocognitive measures, supported by parent and teacher ratings. However, no treatment or time effects were found for the measures of academic performance, behavior in class or quality of life. We suggest that methodological and non specific treatment factors should be taken into account when interpreting current findings. Future trials with well-blinded measures and a third ‘no treatment’ control group are needed before cognitive training can be supported as an evidence-based treatment of ADHD. Future research should put more effort into investigating why, how and for whom cognitive training is effective as this would also potentially lead to improved intervention- and study designs
    corecore