6 research outputs found
A Churn for the Better: Localizing Censorship using Network-level Path Churn and Network Tomography
Recent years have seen the Internet become a key vehicle for citizens around
the globe to express political opinions and organize protests. This fact has
not gone unnoticed, with countries around the world repurposing network
management tools (e.g., URL filtering products) and protocols (e.g., BGP, DNS)
for censorship. However, repurposing these products can have unintended
international impact, which we refer to as "censorship leakage". While there
have been anecdotal reports of censorship leakage, there has yet to be a
systematic study of censorship leakage at a global scale. In this paper, we
combine a global censorship measurement platform (ICLab) with a general-purpose
technique -- boolean network tomography -- to identify which AS on a network
path is performing censorship. At a high-level, our approach exploits BGP churn
to narrow down the set of potential censoring ASes by over 95%. We exactly
identify 65 censoring ASes and find that the anomalies introduced by 24 of the
65 censoring ASes have an impact on users located in regions outside the
jurisdiction of the censoring AS, resulting in the leaking of regional
censorship policies
How India Censors the Web
One of the primary ways in which India engages in online censorship is by
ordering Internet Service Providers (ISPs) operating in its jurisdiction to
block access to certain websites for its users. This paper reports the
different techniques Indian ISPs are using to censor websites, and investigates
whether website blocklists are consistent across ISPs. We propose a suite of
tests that prove more robust than previous work in detecting DNS and HTTP based
censorship. Our tests also discern the use of SNI inspection for blocking
websites, which is previously undocumented in the Indian context. Using
information from court orders, user reports, and public and leaked government
orders, we compile the largest known list of potentially blocked websites in
India. We pass this list to our tests and run them from connections of six
different ISPs, which together serve more than 98% of Internet users in India.
Our findings not only confirm that ISPs are using different techniques to block
websites, but also demonstrate that different ISPs are not blocking the same
websites
Assessing the Privacy Benefits of Domain Name Encryption
As Internet users have become more savvy about the potential for their
Internet communication to be observed, the use of network traffic encryption
technologies (e.g., HTTPS/TLS) is on the rise. However, even when encryption is
enabled, users leak information about the domains they visit via DNS queries
and via the Server Name Indication (SNI) extension of TLS. Two recent proposals
to ameliorate this issue are DNS over HTTPS/TLS (DoH/DoT) and Encrypted SNI
(ESNI). In this paper we aim to assess the privacy benefits of these proposals
by considering the relationship between hostnames and IP addresses, the latter
of which are still exposed. We perform DNS queries from nine vantage points
around the globe to characterize this relationship. We quantify the privacy
gain offered by ESNI for different hosting and CDN providers using two
different metrics, the k-anonymity degree due to co-hosting and the dynamics of
IP address changes. We find that 20% of the domains studied will not gain any
privacy benefit since they have a one-to-one mapping between their hostname and
IP address. On the other hand, 30% will gain a significant privacy benefit with
a k value greater than 100, since these domains are co-hosted with more than
100 other domains. Domains whose visitors' privacy will meaningfully improve
are far less popular, while for popular domains the benefit is not significant.
Analyzing the dynamics of IP addresses of long-lived domains, we find that only
7.7% of them change their hosting IP addresses on a daily basis. We conclude by
discussing potential approaches for website owners and hosting/CDN providers
for maximizing the privacy benefits of ESNI.Comment: In Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security (ASIA CCS '20), October 5-9, 2020, Taipei, Taiwa