6 research outputs found

    Protected graft copolymer (PGC) basal formulation of insulin as potentially safer alternative to Lantus(R) (insulin-glargine): a streptozotocin-induced, diabetic Sprague Dawley rats study

    No full text
    PURPOSE: To develop a long-acting formulation of native human insulin with a similar pharmacodynamics (PD) profile as the insulin analogue insulin glargine (Lantus(R), Sanofi-Aventis) with the expectation of retaining native human insulin\u27s superior safety profile as insulin glargine is able to activate the insulin-like growth factor 1 (IGF-1) receptor and is linked to a number of malignancies at a higher rate than regular human insulin. METHODS: Development of protected graft copolymer (PGC) excipients that bind native human insulin non-covalently and testing blood glucose control obtained with these formulations in streptozotocin-induced diabetic Sprague Dawley rats compared to equally dosed insulin glargine. RESULTS: PGC-formulations of native human insulin are able to control blood glucose to the same extent and for the same amount of time after s.c. injection as the insulin analogue insulin glargine. No biochemical changes were made to the insulin that would change receptor binding and activation with their possible negative effects on the safety of the insulin. CONCLUSION: Formulation with the PGC excipient offers a viable alternative to biochemically changing insulin or other receptor binding peptides to improve PD properties

    Protected graft copolymer excipient leads to a higher acute maximum tolerated dose and extends residence time of vasoactive intestinal Peptide significantly better than sterically stabilized micelles

    No full text
    PURPOSE: To determine and compare pharmacokinetics and toxicity of two nanoformulations of Vasoactive Intestinal Peptide (VIP). METHODS: VIP was formulated using a micellar (Sterically Stabilized Micelles, SSM) and a polymer-based (Protected Graft Copolymer, PGC) nanocarrier at various loading percentages. VIP binding to the nanocarriers, pharmacokinetics, blood pressure, blood chemistry, and acute maximum tolerated dose (MTD) of the formulations after injection into BALB/c mice were determined. RESULTS: Both formulations significantly extend in vivo residence time compared to unformulated VIP. Formulation toxicity is dependent on loading percentage, showing major differences between the two carrier types. Both formulations increase in vivo potency of unformulated VIP and show acute MTDs at least 140 times lower than unformulated VIP, but still at least 100 times higher than the anticipated highest human dose, 1-5 mug/kg. These nanocarriers prevented a significant drop in arterial blood pressure compared to unformulated VIP. CONCLUSIONS: While both carriers enhance in vivo residence time compared to unformulated VIP and reduce the drop in blood pressure immediately after injection, PGC is the excipient of choice to extend residence time and improve the safety of potent therapeutic peptides such as VIP
    corecore