3 research outputs found
Synthesis, Characterization, Single-Crystal X-ray Structure and Biological Activities of [(Z)-N′-(4-Methoxybenzylidene)benzohydrazide–Nickel(II)] Complex
(Z)-N′-(4-methoxybenzylidene)benzohydrazide (HL) and its Ni(II) complex (Ni(II)-2L) were synthesized using eco-friendly protocols. The single X-ray crystal structure of Ni(II)-2L was solved. Moreover, the structural properties were evaluated using Fourier transform infrared, proton nuclear magnetic resonance, mass, and Ultraviolet/Visible spectroscopy. The diamagnetic and thermal stability were assessed using magnetic susceptibility and thermogravimetric analysis, respectively. The biological activities of both HL and Ni(II)-2L (62.5–1000 μg/mL) against Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial and fungal (Candida albicans, Aspergillus niger, and Aspergillus clavatus) species were studied using the minimum inhibitory concentration (MIC) tests method in reference to Gentamycin and Nystatin standard drugs, respectively. The results revealed an affordable, environmentally friendly, and efficient synthetic method of HL using water as a green solvent. The Ni(II)-2L complex crystallized in a distorted square planar, P21/n space group, and one Ni(II) to two bidentate negatively charged ligand ratio. The analysis of biological activity revealed higher activity of the complex against S. aureus and S. pyogenes (bacteria) and A. niger and A. clavatus (fungi) compared to the ligand. However, the highest activity was at a MIC of 62.5 μg/mL for the complex against S. pyogenes and for the ligand against E. coli. Therefore, both HL and Ni(II)-2L could be promising potential antimicrobials and their selective activity could be an additional benefit of these bioactive materials
Antimicrobial Activity of Novel Ni(II) and Zn(II) Complexes with (E)-2-((5-Bromothiazol-2-yl)imino)methyl)phenol Ligand: Synthesis, Characterization and Molecular Docking Studies
In order to address the challenges associated with antibiotic resistance by bacteria, two new complexes, Ni(II) and Zn(II), have been synthesized using the conventional method based on Schiff base ligand (E)-2-((5-bromothiazol-2-yl) imino) methyl) phenol. The Schiff base ligand (HL) was synthesized using salicylaldehyde and 5-(4-bromophenyl)thiazol-2-amine in both traditional and efficient, ecologically friendly, microwave-assisted procedures. The ligand and its complexes were evaluated by elemental analyses, FTIR spectroscopy, UV-Vis spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and magnetic susceptibility. The ligand and its complexes were tested for antibacterial activity against three Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus ATCC 43300 and Enterococcus faecalis ATCC 29212) and three Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 700603). The findings demonstrate the potent activity of the ligand and its complexes against selective bacteria but the Ni(II) complex with MIC values ranging from 1.95 to 7.81 µg/mL outperformed all other compounds, including the widely used antibiotic Streptomycin. Furthermore, the docking study provided evidence supporting the validity of the antimicrobial results, since the Ni complex showed superior binding affinity against to E. coli NAD synthetase, which had a docking score (−7.61 kcal/mol)