3,229 research outputs found
A Fast Algorithm for Parabolic PDE-based Inverse Problems Based on Laplace Transforms and Flexible Krylov Solvers
We consider the problem of estimating parameters in large-scale weakly
nonlinear inverse problems for which the underlying governing equations is a
linear, time-dependent, parabolic partial differential equation. A major
challenge in solving these inverse problems using Newton-type methods is the
computational cost associated with solving the forward problem and with
repeated construction of the Jacobian, which represents the sensitivity of the
measurements to the unknown parameters. Forming the Jacobian can be
prohibitively expensive because it requires repeated solutions of the forward
and adjoint time-dependent parabolic partial differential equations
corresponding to multiple sources and receivers. We propose an efficient method
based on a Laplace transform-based exponential time integrator combined with a
flexible Krylov subspace approach to solve the resulting shifted systems of
equations efficiently. Our proposed solver speeds up the computation of the
forward and adjoint problems, thus yielding significant speedup in total
inversion time. We consider an application from Transient Hydraulic Tomography
(THT), which is an imaging technique to estimate hydraulic parameters related
to the subsurface from pressure measurements obtained by a series of pumping
tests. The algorithms discussed are applied to a synthetic example taken from
THT to demonstrate the resulting computational gains of this proposed method
- …