146 research outputs found

    Algorithms for Visualizing Phylogenetic Networks

    Full text link
    We study the problem of visualizing phylogenetic networks, which are extensions of the Tree of Life in biology. We use a space filling visualization method, called DAGmaps, in order to obtain clear visualizations using limited space. In this paper, we restrict our attention to galled trees and galled networks and present linear time algorithms for visualizing them as DAGmaps.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    A comparative assessment of biomass ash preparation methods using X-ray fluorescence and wet chemical analysis

    Get PDF
    X-ray fluorescence (XRF) spectroscopy is a rapid method used to determine the composition of biomass ash, but the accuracy of the method is sensitive to various factors including ash preparation methods. In this study different types of biomass ash were examined by using wet chemical analysis (WCA) and compared with the respective XRF results. The biomass ash was initially prepared in accordance with the European Standard method at 550 °C. At this low combustion temperature the amount of residual unburned carbon is significant. To eliminate this, the ashes were heated at higher temperatures: a batch of twenty biomass ashes were heated at 850 °C and a batch of five heated to 815 °C. At these higher temperatures there may be loss of inorganic components by vaporisation. Variation in these effects may lead to unreliable results. The relationship between XRF and WCA results are given by regression equations. The ashes processed at 815 °C show better agreement between the two analysis methods

    The impact of aluminosilicate-based additives upon the sintering and melting behaviour of biomass ash

    Get PDF
    The composition of ash arising from biomass combustion can cause significant slagging and fouling issues in pulverised-fuel boilers, particularly if high concentrations of alkalis are present. Al–Si additives have shown promise in improving the ash deposition characteristics of troublesome biomass, converting volatile potassium to potassium aluminosilicates. This article presents results of lab-scale testing for two high-potassium biomass ashes, olive-cake (OCA) and white-wood (WWA), combined with two promising additives, coal pulverised fuel ash (PFA) and kaolin powder, at 5% mass fraction. Ash fusion testing results show that the use of these additives consistently increases flow temperatures. For WWA, kaolin was observed to reduce deformation temperatures and increase flow temperatures to far above combustion temperatures. Sinter strength testing showed that additive use significantly improves the deposition properties of OCA, preventing the precipitation of KCl and formation of deposits that are highly undesirable for removal via sootblower. Sintering was eliminated at all temperatures measured with the use of kaolin. Both additives had negative effects upon the sintering of WWA, indicating that Al–Si additive use should be restricted to high K, high Cl biomass. High temperature viscometry of OCA, combined with thermodynamic modelling, showed that viscosities at combustion temperatures were far below ideal values due high Mg concentration and silicate formation. Kaolin at 5% mass fraction was predicted to significantly improve this behaviour, with aluminosilicate formation producing favourable viscosities. Results indicate that kaolin addition to high K, high Cl biomass such as OCA shows promise in making the ash compositions viable for pulverised-fuel combustion

    Energy potential of native shrub species in northern Spain

    Get PDF
    This paper we present an energy review of the waste generated by shrub species in soils of low fertility for use as fuel in a power plant. The residues analysed belong to the species: Rhamus alaternus, Ulex europaeus, Prunus spinosa, Smilax aspera, Erica sp., Rubus ulmifolius, and Pteridium aquilinum. Gross calorific value (GCV), net calorific value (NCV), density, elementary chemical analysis, moisture content, percentage of ash, productivity, energy density and FVI (fuel value index) have been measured. These parameters have been determined for three levels of moisture (maximum, medium and minimum). At medium moisture level, the residues of U. europaeus are those that reach the greatest FVI, 20,000. In the other extreme is the P. aquilinum with an FVI of 403. The average productivity of waste, in t ha 1, of each species has been determined in order to know how much energy is stored per hectare. U. europaeus and P. spinosa are the species which accumulate more energy per hectare, with similar values of around 81 MJ ha 1 yr 1 and installed power of 2.59Wha 1. The energy recovery of the waste in a thermal power plant would generate an annual revenue of 14.6 MV, taking into account that 40% of the forest land covered by shrub in Cantabria is used for this purpose

    Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Get PDF
    Background - Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results - Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions - Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction
    • …
    corecore