12 research outputs found

    Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals

    Full text link
    Nonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in nanocrystals are not understood. Here, femtosecond electron diffraction measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in semiconductor nanocrystals. Investigation of the excitation energy dependence shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap result in transient lattice heating that occurs on a much longer 200 ps timescale, governed by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices.Comment: 17 pages, 4 figure

    Effect of Thermal Fluctuations on the Radiative Rate in Core/Shell Quantum Dots

    Get PDF
    The effect of lattice fluctuations and electronic excitations on the radiative rate is demonstrated in CdSe/CdS core/shell spherical quantum dots (QDs). Using a combination of time-resolved photoluminescence spectroscopy and atomistic simulations, we show that lattice fluctuations can change the radiative rate over the temperature range from 78 to 300 K. We posit that the presence of the core/shell interface plays a significant role in dictating this behavior. We show that the other major factor that underpins the change in radiative rate with temperature is the presence of higher energy states corresponding to electron excitation into the shell. These effects should be present in other core/shell samples and should also affect other excited state rates, such as the rate of Auger recombination or the rate of charge transfer

    Temperature-Dependent Hole Transfer from Photoexcited Quantum Dots to Molecular Species: Evidence for Trap-Mediated Transfer

    Get PDF
    The effect of temperature on the rate of hole transfer from photoexcited quantum dots (QDs) is investigated by measuring the driving force dependence of the charge transfer rate for different sized QDs across a range of temperatures from 78 to 300 K. Spherical CdSe/CdS core/shell QDs were used with a series of ferrocene-derived molecular hole acceptors with an 800 meV range in electrochemical potential. Time-resolved photoluminescence measurements and photoluminescence quantum yield measurements in an integrating sphere were both performed from 78 to 300 K to obtain temperature-dependent rates for a series of driving forces as dictated by the nature of the molecular acceptor. For both QD sizes studied and all ligands, the Arrhenius plot of hole transfer exhibited an activated (linear) regime at higher temperatures and a temperature-independent regime at low temperatures. The extracted activation energies in the high-temperature regime were consistent across all ligands for a given QD size. This observation is not consistent with direct charge transfer from the QD valence band to the ferrocene acceptor. Instead, a model in which charge transfer is mediated by a shallow and reversible trap more accurately fits the experimental results. Implications for this observed trap-mediated transfer are discussed including as a strategy to more efficiently extract charge from QDs

    Deterministic Nucleation of InP on Metal Foils with the Thin-Film Vapor–Liquid–Solid Growth Mode

    Full text link
    A method for growth of ultralarge grain (>100 μm) semiconductor thin-films on nonepitaxial substrates was developed via the thin-film vapor–liquid–solid growth mode. The resulting polycrystalline films exhibit similar optoelectronic quality as their single-crystal counterparts. Here, deterministic control of nucleation sites is presented by substrate engineering, enabling user-tuned internuclei spacing of up to ∼1 mm. Besides examining the theory associated with the nucleation process, this work presents an important advance toward controlled growth of high quality semiconductor thin films with unprecedented grain sizes on nonepitaxial substrates
    corecore