7 research outputs found

    Parasites of larval black flies (Diptera: Simuliidae) in Thailand

    Get PDF
    Parasites of larval black flies are reported for the first time from Thailand, including mermithid nematodes(Mermithidae), microsporidian fungi (Zygomycota), and the fungus Coelomycidium simulii Debaisieux (Blastocladiomycetes).The following nine species of black flies were infected with one or more parasites: Simulium asakoae, S. chamlongi,S. chiangmaiense, S. fenestratum, S. feuerborni, S. nakhonense, S. nodosum, S. quinquestriatum, and S. tani. The prevalenceof patent infections per host species per season was 0.1–7.1% for mermithids, 0.1–6.0% for microsporidia, and 0.1–3.0% forC. simulii

    PirAB Toxin from Photorhabdus asymbiotica as a Larvicide against Dengue Vectorsâ–ż

    No full text
    We have evaluated Photorhabdus insect-related protein (Pir) from Photorhabdus asymbiotica against dengue vectors. PirAB shows larvicidal activity against both Aedes aegypti and Aedes albopictus larvae but did not affect the Mesocyclops thermocyclopoides predator. PirAB expressed the strongest toxicity compared to PirA, PirB, or the mixture of PirA plus PirB. Whether the presence of an enterobacterial repetitive intergenic consensus sequence in PirAB, but not in PirA, PirB, or the mixture of PirA plus PirB, has any impact on biological control efficacy needs further investigation

    Coxiella-like bacteria in fowl ticks from Thailand

    No full text
    Abstract Background Coxiella bacteria were identified from various tick species across the world. Q fever is a zoonotic disease caused by the bacteria Coxiella burnetii that most commonly infects a variety of mammals. Non-mammalian hosts, such as birds, have also been reported to be infected with the pathogenic form of “Candidatus Coxiella avium”. This research increases the list of tick species that have been found with Coxiella-like bacteria in Thailand. Methods A total of 69 ticks were collected from 27 domestic fowl (Gallus gallus domesticus), 2 jungle fowl (Gallus gallus) and 3 Siamese firebacks (Lophura diardi) at 10 locations (provinces) in Thailand. Ticks were identified and PCR was used to amplify Coxiella bacteria 16S rRNA, groEL and rpoB genes from the extracted tick DNA. MEGA6 was used to construct phylogenetic trees via a Maximum Likelihood method. Results The phylogenetic analysis based on the 16S rRNA gene showed that the Coxiella sequences detected in this study grouped in the same clade with Coxiella sequences from the same tick genus (or species) reported previously. In contrast, rpoB gene of the Coxiella bacteria detected in this study did not cluster together with the same tick genus reported previously. Instead, they clustered by geographical distribution (Thai cluster and Malaysian cluster). In addition, phylogenetic analysis of the groEL gene (the chaperonin family) showed that all Coxiella bacteria found in this study were grouped in the same clade (three sister groups). Conclusions To our knowledge, we found for the first time rpoB genes of Coxiella-like bacteria in Haemaphysalis wellingtoni ticks forming two distinct clades by phylogenetic analysis. This may be indicative of a horizontal gene transfer event

    A novel Rickettsia, Candidatus Rickettsia takensis, and the first record of Candidatus Rickettsia laoensis in Dermacentor from Northwestern Thailand

    No full text
    Abstract Three hundred and forty-four tick samples were collected from vegetation at Taksin Maharat National Park, Tak province, northwestern Thailand. They were morphologically identified and molecularly confirmed by 16S rRNA and COI genes as Dermacentor laothaiensis (n = 105), D. steini (n = 139), and D. auratus (n = 100). These ticks were examined for the spotted fever group rickettsiae (SFGRs) using PCR and DNA sequencing of six genes; 17-kDa, gltA, 16S rRNA, ompA, ompB, and sca4. Of these ticks, 6.10% (21/344) gave positive results for the presence of SFGRs. Phylogenetic analyses of the SFGRs clearly indicated that a novel genotype assigned as Candidatus Rickettsia takensis was detected in D. laothaiensis (19/105) and at lesser frequency in D. steini (1/139). Furthermore, Candidatus Rickettsia laoensis was also found at a low frequency in D. auratus (1/100), the first record in Thailand. Although, the pathogenicities of these SFGRs remain unknown, our findings suggest potential risks of SFGRs being transmitted via ticks near the border between Thailand and Myanmar, a gateway of daily migrations of local people and visitors both legal and illegal
    corecore