5,136 research outputs found

    Testing post-Newtonian theory with gravitational wave observations

    Full text link
    The Laser Interferometric Space Antenna (LISA) will observe supermassive black hole binary mergers with amplitude signal-to-noise ratio of several thousands. We investigate the extent to which such observations afford high-precision tests of Einstein's gravity. We show that LISA provides a unique opportunity to probe the non-linear structure of post-Newtonian theory both in the context of general relativity and its alternatives.Comment: 9 pages, 2 figure

    In silico analysis for the presence of HARDY an Arabidopsis drought tolerance DNA binding transcription factor product in chromosome 6 of Sorghum bicolor genome

    Get PDF
    Expression of the Arabidopsis HARDY (hrd) DNA binding transcription factor (555 bp present on chromosome 2) has been shown to increase WUE in rice by Karaba et al 2007 (PNAS, 104:15270–15275). We conducted a detail analysis of the complete sorghum genome for the similarity/presence of either DNA, mRNA or protein product of the Arabidopsis HARDY (hrd) DNA binding transcription factor (555 bp present on chromosome 2). Chromosome 6 showed a sequence match of 61.5 percent positive between 61 and 255 mRNA residues of the query region. Further confirmation was obtained by TBLASTN which showed that chromosome 6 of the sorghum genome has a region between 54948120 and 54948668 which has 80 amino acid similarities out of the 185 residues. A homology model was constructed and verified using Anolea, Gromos and Verify3D. Scanning the motif for possible activation sites revealed that there was a protein kinase C phosphorylation site between 15th and 20th residue. The study indicates the possibility of the presence of a DNA binding transcription factor in chromosome 6 of Sorghum bicolor with 60 percent similarity to that of Arabidopsis hrd DNA binding transcription factor

    Singular value decomposition in parametrised tests of post-Newtonian theory

    Full text link
    Various coefficients of the 3.5 post-Newtonian (PN) phasing formula of non-spinning compact binaries moving in circular orbits is fully characterized by the two component masses. If two of these coefficients are independently measured, the masses can be estimated. Future gravitational wave observations could measure many of the 8 independent PN coefficients calculated to date. These additional measurements can be used to test the PN predictions of the underlying theory of gravity. Since all of these parameters are functions of the two component masses, there is strong correlation between the parameters when treated independently. Using Singular Value Decomposition of the Fisher information matrix, we remove this correlations and obtain a new set of parameters which are linear combinations of the original phasing coefficients. We show that the new set of parameters can be estimated with significantly improved accuracies which has implications for the ongoing efforts to implement parametrised tests of PN theory in the data analysis pipelines.Comment: 17 pages, 6 figures, Accepted for publication in Classical and Quantum Gravity (Matches with the published version

    Generic bounds on dipolar gravitational radiation from inspiralling compact binaries

    Full text link
    Various alternative theories of gravity predict dipolar gravitational radiation in addition to quadrupolar radiation. We show that gravitational wave (GW) observations of inspiralling compact binaries can put interesting constraints on the strengths of the dipole modes of GW polarizations. We put forward a physically motivated gravitational waveform for dipole modes, in the Fourier domain, in terms of two parameters: one which captures the relative amplitude of the dipole mode with respect to the quadrupole mode (α\alpha) and the other a dipole term in the phase (β\beta). We then use this two parameter representation to discuss typical bounds on their values using GW measurements. We obtain the expected bounds on the amplitude parameter α\alpha and the phase parameter β\beta for Advanced LIGO (AdvLIGO) and Einstein Telescope (ET) noise power spectral densities using Fisher information matrix. AdvLIGO and ET may at best bound α\alpha to an accuracy of 102\sim10^{-2} and 103\sim10^{-3} and β\beta to an accuracy of 105\sim10^{-5} and 106\sim10^{-6} respectively.Comment: Matches with the published versio
    corecore