4,739 research outputs found

    Neel to staggered dimer order transition in a generalized honeycomb lattice Heisenberg model

    Full text link
    We study a generalized honeycomb lattice spin-1/2 Heisenberg model with nearest-neighbor antiferromagnetic 2-spin exchange, and competing 4-spin interactions which serve to stabilize a staggered dimer state which breaks lattice rotational symmetry. Using a combination of quantum Monte Carlo numerics, spin wave theory, and bond operator theory, we show that this model undergoes a strong first-order transition between a Neel state and a staggered dimer state upon increasing the strength of the 4-spin interactions. We attribute the strong first order character of this transition to the spinless nature of the core of point-like Z(3) vortices obtained in the staggered dimer state. Unlike in the case of a columnar dimer state, disordering such vortices in the staggered dimer state does not naturally lead to magnetic order, suggesting that, in this model, the dimer and Neel order parameters should be thought of as independent fields as in conventional Landau theory.Comment: 13 pages, 10 fig
    • …
    corecore