34 research outputs found

    Rural Indian tribal communities: an emerging high-risk group for HIV/AIDS

    Get PDF
    BACKGROUND: Rural Indian tribes are anthropologically distinct with unique cultures, traditions and practices. Over the years, displacement and rapid acculturation of this population has led to dramatic changes in their socio-cultural and value systems. Due to a poor health infrastructure, high levels of poverty and ignorance, these communities are highly vulnerable to various health problems, especially, communicable diseases including HIV/AIDS. Our study sought to assess knowledge, attitudes and practices regarding sexuality, and the risk factors associated with the spread of HIV/AIDS and STDs among these communities. METHODS: A nested cross sectional study was undertaken as part of the on going Reproductive and Child Health Survey. A total of 5,690 participants age 18–44 were recruited for this study. Data were obtained through home interviews, and focused on socio-demographics, knowledge, attitudes and behaviors regarding sexuality, HIV/AIDS and other STDs. RESULTS: The study revealed that only 22% of adults had even heard of AIDS, and 18 % knew how it is transmitted. In addition, only 5% knew that STDs and AIDS were related to each other. AIDS awareness among women was lower compared to men (14% vs.30 %). Regarding sexual practices, 35% of the respondents reported having had extramarital sexual encounters, with more males than females reporting extramarital affairs. CONCLUSION: Lack of awareness, permissiveness of tribal societies for premarital or extra-marital sexual relationships, and sexual mixing patterns predispose these communities to HIV/AIDS and STD infections. There is a dire need for targeted interventions in order to curtail the increasing threat of HIV and other STDs among these vulnerable populations

    SRI : a comparative analysis of environmental, social, governance, reputational and labor factors

    No full text
    Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 89-92).Socially Responsible Investing (SRI) aims to deliver competitive investment returns while fostering social good. It aims achieves its objective by including a firm's corporate social performance (CSP) in its investment d s . I has giesgnfct momentum over the past few years and is poised to assume a mainstream role in the asset management business. However, the scholarship on the effect of corporate social performance on a firm's corporate financial performance (CFP) is ambiguous. CSP is a complex entity made of multi-dimensional sub-components. This thesis attempts to breakdown the multi-dimensional CSP into its core constituent dimensions and to examine their inter-relationships and relationship with CFP, using statistical analysis. Two different vendor data sets were used as samples to understand if proprietary transformations made by vendors affect results. Analysis reveals that differences in factor payoff horizons, difficulties in transforming environmental, social and governance data into composite CSP ratings and the proprietary nature of such transformation could be some of the contributing factors to the ambiguity in establishing the nature of CSP-CFP relationship.by Arun Balasubramaniam.S.M.in Engineering and Managemen

    Prospects of acne vaccines targeting secreted virulence factors of Cutibacterium acnes

    No full text
    Introduction: Acne vulgaris afflicts many people, and despite the multitude of the anti-acne products on the market, there is still no effective treatment that can prevent and cure this disease. The severity of acne vulgaris is highly associated with the inflammatory response to Propionibacterium acnes (P. acnes) now referred to as Cutibacterium acnes (C. acnes), an opportunistic skin bacterium in the human skin microbiome. Areas covered: We here provide the prospects of creating acne vaccines targeting secreted virulence factors of C. acnes including secretory Christie-Atkins-Munch-Peterson (CAMP) factor. Neutralization of secreted virulence factors by either active or passive vaccination may have a lower risk of disturbing the microbial ecosystem in the human skin microbiome. Expert opinion: Major steps could be taken to start a public vaccination program at an early age to prevent the future occurrence of acne vulgaris. Future therapeutic monoclonal antibodies can be designed to specifically neutralize virulence factors of C. acnes including CAMP factors without disrupting the optimal balance of C. acnes in the human skin microbiome and lowering the risk of creating drug-resistant C. acnes. Targeting secreted virulence factors without disturbing the commensal relationship of host can be a novel gateway towards the therapeutic treatment of acne vulgaris

    Treatment of Obesity Through Glial Cell-Derived Neurotrophic Factor Lipid Nanoparticle Delivery in Mice

    No full text
    Background and Aims: The overexpression of glial cell-derived neurotrophic factor (GDNF) in the liver and adipose tissues offers strong protection against high-fat diet (HFD)-induced obesity in mice. We hypothesize that sustainably enhancing GDNF expression in the liver may provide a therapeutic effect that can prevent the progression of HFD-induced obesity in mice. Methods: Expression lentivector encoding mouse GDNF (GDNF(pDNA) or empty vector (pDNA, control) were encapsulated in lipid nanoparticles (LNPs) using the thin-film hydration method. Mice were fed with regular diet (RD) or HFD for 20 weeks prior to injection and the GDNF and control vector-loaded LNPs were administered by intravenous (IV) injection to mice once weekly for 5 weeks. Changes in body weight were monitored and mice tissues were collected and imaged for fluorescence using an IVIS in vivo imaging system. Post-treatment abdominal fat weight, colon length, and spleen weight were obtained. GDNF protein levels in the liver and serum were quantified by enzyme-linked immunosorbent assay, while liver AKT serine/threonine kinase and AMP-activated protein kinase phosphorylation levels were evaluated by Western blotting. Results: IV-injected GDNF(pDNA)-loaded LNPs targeted the liver and remained in there for up to 15 days postinjection. A single injection of GDNF(pDNA)-loaded LNPs significantly increased GDNF expression for 7 days and consequently increased the levels of phosphorylated AKT serine/threonine kinase and AMP-activated protein kinase. Once weekly injections of GDNF(pDNA)-loaded LNPs for 5 weeks slowed increase in body weight, reduced abdominal fat, and modulated the gut microbiota toward a healthier composition in HFD-fed mice. Conclusion: GDNF(pDNA)-loaded LNPs could potentially be developed as a therapeutic strategy to reverse weight gain in obese patients

    Histatin-1 Attenuates LPS-Induced Inflammatory Signaling in RAW264.7 Macrophages

    No full text
    Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages

    Skin Bacteria Mediate Glycerol Fermentation to Produce Electricity and Resist UV-B

    No full text
    Bacteria that use electron transport proteins in the membrane to produce electricity in the gut microbiome have been identified recently. However, the identification of electrogenic bacteria in the skin microbiome is almost completely unexplored. Using a ferric iron-based ferrozine assay, we have identified the skin Staphylococcus epidermidis (S. epidermidis) as an electrogenic bacterial strain. Glycerol fermentation was essential for the electricity production of S. epidermidis since the inhibition of fermentation by 5-methyl furfural (5-MF) significantly diminished the bacterial electricity measured by voltage changes in a microbial fuel cell (MFC). A small-scale chamber with both anode and cathode was fabricated in order to study the effect of ultraviolet-B (UV-B) on electricity production and bacterial resistance to UV-B. Although UV-B lowered bacterial electricity, a prolonged incubation of S. epidermidis in the presence of glycerol promoted fermentation and elicited higher electricity to suppress the effect of UV-B. Furthermore, the addition of glycerol into S. epidermidis enhanced bacterial resistance to UV-B. Electricity produced by human skin commensal bacteria may be used as a dynamic biomarker to reflect the UV radiation in real-time

    Using a 3- O -Sulfated Heparin Octasaccharide To Inhibit the Entry of Herpes Simplex Virus Type 1 †

    No full text
    Heparan sulfate (HS) is a highly sulfated polysaccharide and is present in large quantities on the cell surface and in the extracellular matrix. Herpes simplex virus type 1(HSV-1) utilizes a specialized cell surface HS, known as 3-O-sulfated HS, as an entry receptor to establish infection. Here, we exploit an approach to inhibit HSV-1 infection by using a 3-O-sulfated octasaccharide, mimicking the active domain of the entry receptor. The 3-O-sulfated octasaccharide was synthesized by incubating a heparin octasaccharide (3-OH octasaccharide) with HS 3-O-sulfotransferase isoform 3. The resultant 3-O-sulfated octasaccharide has a structure of ΔUA2S-GlcNS6S-IdoUA2S-GlcNS6S-IdoUA2S-GlcNS3S6S-IdoUA2S-GlcNS6S (where ΔUA is 4-deoxy-α-l-threo-hex-4-enopyranosyluronic acid, GlcN is d-glucosamine and IdoUA is l-iduronic acid). Results from cell based assays revealed that the 3-O-sulfated octasaccharide has stronger activity in blocking HSV-1 infection than that of the 3-OH octasaccharide, suggesting that the inhibition of HSV-1 infection requires a unique sulfation moiety. Our results suggest the feasibility of inhibiting HSV-1 infection by blocking viral entry with a specific oligosaccharide

    Bioanalytical Method Development and Validation Study of Neuroprotective Extract of Kashmiri Saffron Using Ultra-Fast Liquid Chromatography-Tandem Mass Spectrometry (UFLC-MS/MS): In Vivo Pharmacokinetics of Apocarotenoids and Carotenoids

    No full text
    Kashmir saffron (Crocus sativus L.), also known as Indian saffron, is an important Asian medicinal plant with protective therapeutic applications in brain health. The main bioactive in Kashmir or Indian Saffron (KCS) and its extract (CSE) are apocarotenoids picrocrocin (PIC) and safranal (SAF) with carotenoids, crocetin esters (crocins), and crocetins. The ultra-fast liquid chromatography(UFLC)- photodiode array standardization confirmed the presence of biomarkers PIC, trans-4-GG-crocin (T4C), trans-3-Gg-crocin (T3C), cis-4-GG-crocin (C4C), trans-2-gg-crocin (T2C), trans-crocetin (TCT), and SAF in CSE. This study’s objectives were to develop and validate a sensitive and rapid UFLC-tandem mass spectrometry method for PIC and SAF along T4C and TCT in rat plasma with internal standards (IS). The calibration curves were linear (R2 > 0.990), with the lower limit of quantification (LLOQ) as 10 ng/mL. The UFLC-MS/MS assay-based precision (RSD, <15%) and accuracy (RE, −11.03–9.96) on analytical quality control (QC) levels were well within the acceptance criteria with excellent recoveries (91.18–106.86%) in plasma samples. The method was applied to investigate the in vivo pharmacokinetic parameters after oral administration of 40 mg/kg CSE in the rats (n = 6). The active metabolite TCT and T4C, PIC, SAF were quantified for the first time with T3C, C4C, T2C by this validated bioanalytical method, which will be useful for preclinical/clinical trials of CSE as a potential neuroprotective dietary supplement
    corecore