16 research outputs found

    Conformational Analysis of N-Alkyl-N-[2-(diphenylphosphoryl)ethyl]amides of Diphenylphosphorylacetic Acid: Dipole Moments, IR Spectroscopy, DFT Study

    No full text
    Experimental and theoretical conformational analysis of N-methyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide, N-butyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide, and N-octyl-N-[2-(diphenylphosphoryl)ethyl]diphenylphosphorylacetamide was carried out by the methods of dipole moments, IR spectroscopy, and Density Functional Theory (DFT) B3PW91/6-311++G(df,p) calculations. In solution, these N,N-dialkyl substituted bisphosphorylated acetamides exist as a conformational equilibrium of several forms divided into two groups—with Z- or E-configuration of the carbonyl group and alkyl substituent, and syn or anti arrangement of the phosphoryl-containing fragments relative to the amide plane. The substituents at the phosphorus atoms have eclipsed cis- or staggered gauche-orientation relative to the P=O groups, and cis orientation of the substituents is due to the presence of intramolecular H-contacts P=O...H−Cphenyl or p,π conjugation between the phosphoryl group and the phenyl ring. Preferred conformers of acetamides molecules are additionally stabilized by various intramolecular hydrogen contacts with the participation of oxygen atoms of the P=O or C=O groups and hydrogen atoms of the methylene and ethylene bridges, alkyl substituents, and phenyl rings. However, steric factors, such as a flat amide fragment, the bulky phenyl groups, and the configuration of alkyl bridges, make a significant contribution to the realization of preferred conformers

    Design of Conjugates Based on Sesquiterpene Lactones with Polyalkoxybenzenes by “Click” Chemistry to Create Potential Anticancer Agents

    No full text
    Using the methodology of “click” chemistry, a singular method has been developed for the synthesis of unique conjugates based on sesquiterpene lactones: dehydrocostuslactone and alantolactone with polyalkoxybenzenes. To expand the structural range of the resulting conjugates, the length of the 1,2,3-triazole spacer was varied. For all synthesized compounds, the cytotoxic profile was determined on the cell lines of tumor origin (SH-SY5Y, HeLa, Hep-2, A549) and normal Hek 293 cells. It was found that the compounds based on alantolactone 7a–d with a long spacer and substances containing dehydrocostuslactone 10a–d with a short spacer have the greatest toxic effect. The decrease in cell survival under the action of these conjugates may be due to their ability to cause dissipation of the transmembrane potential of mitochondria and inhibit the process of glycolysis, leading to cell death. The obtained results confirm the assumption that the development of conjugates based on sesquiterpene lactones and polyalkoxybenzenes can be considered as a promising strategy for the search for potential antitumor agents

    Parahydrogen-Induced Hyperpolarization of Unsaturated Phosphoric Acid Derivatives

    No full text
    Parahydrogen-induced nuclear polarization offers a significant increase in the sensitivity of NMR spectroscopy to create new probes for medical diagnostics by magnetic resonance imaging. As precursors of the biocompatible hyperpolarized probes, unsaturated derivatives of phosphoric acid, propargyl and allyl phosphates, are proposed. The polarization transfer to 1H and 31P nuclei of the products of their hydrogenation by parahydrogen under the ALTADENA and PASADENA conditions, and by the PH-ECHO-INEPT+ pulse sequence of NMR spectroscopy, resulted in a very high signal amplification, which is among the largest for parahydrogen-induced nuclear polarization transfer to the 31P nucleus
    corecore