133 research outputs found

    New Results From CLEO and BES

    Full text link
    Latest experimental results from BES in the charmonium mass region, and those from CLEO in the bottomonium and charmonium spectroscopy are reviewed.Comment: 12 pages, 12 figures, Presented at First Meeting of the APS Topical Group on Hadron Physics, Fermilab, Batavia, Illinois, Oct 24-26, 200

    Prospects for Pentaquark Searches in e+ee^+e^- Annihilations and γγ\gamma\gamma Collisions

    Full text link
    Recent strong experimental evidence of a narrow exotic S = +1 baryon resonance, Θ+\Theta^+, suggests the existence of other exotic baryons. We discuss the prospects of confirming earlier experimental evidence of Θ+\Theta^+ and the observation of additional hypothetical exotic baryons in e+ee^+e^- annihilations and γγ\gamma\gamma collisions at LEP and B Factories

    Studies of the decays D^0 \rightarrow K_S^0K^-\pi^+ and D^0 \rightarrow K_S^0K^+\pi^-

    Full text link
    The first measurements of the coherence factor R_{K_S^0K\pi} and the average strong--phase difference \delta^{K_S^0K\pi} in D^0 \to K_S^0 K^\mp\pi^\pm decays are reported. These parameters can be used to improve the determination of the unitary triangle angle \gamma\ in B^- \rightarrow D~K\widetilde{D}K^- decays, where D~\widetilde{D} is either a D^0 or a D^0-bar meson decaying to the same final state, and also in studies of charm mixing. The measurements of the coherence factor and strong-phase difference are made using quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^- collisions at the \psi(3770) resonance. The measured values are R_{K_S^0K\pi} = 0.70 \pm 0.08 and \delta^{K_S^0K\pi} = (0.1 \pm 15.7)^\circ for an unrestricted kinematic region and R_{K*K} = 0.94 \pm 0.12 and \delta^{K*K} = (-16.6 \pm 18.4)^\circ for a region where the combined K_S^0 \pi^\pm invariant mass is within 100 MeV/c^2 of the K^{*}(892)^\pm mass. These results indicate a significant level of coherence in the decay. In addition, isobar models are presented for the two decays, which show the dominance of the K^*(892)^\pm resonance. The branching ratio {B}(D^0 \rightarrow K_S^0K^+\pi^-)/{B}(D^0 \rightarrow K_S^0K^-\pi^+) is determined to be 0.592 \pm 0.044 (stat.) \pm 0.018 (syst.), which is more precise than previous measurements.Comment: 38 pages. Version 3 updated to include the erratum information. Errors corrected in Eqs (25), (26), 28). Fit results updated accordingly, and external inputs updated to latest best known values. Typo corrected in Eq(3)- no other consequence

    Updated Measurement of the Strong Phase in D0 --> K+pi- Decay Using Quantum Correlations in e+e- --> D0 D0bar at CLEO

    Full text link
    We analyze a sample of 3 million quantum-correlated D0 D0bar pairs from 818 pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV, to give an updated measurement of \cos\delta and a first determination of \sin\delta, where \delta is the relative strong phase between doubly Cabibbo-suppressed D0 --> K+pi- and Cabibbo-favored D0bar --> K+pi- decay amplitudes. With no inputs from other experiments, we find \cos\delta = 0.81 +0.22+0.07 -0.18-0.05, \sin\delta = -0.01 +- 0.41 +- 0.04, and |\delta| = 10 +28+13 -53-0 degrees. By including external measurements of mixing parameters, we find alternative values of \cos\delta = 1.15 +0.19+0.00 -0.17-0.08, \sin\delta = 0.56 +0.32+0.21 -0.31-0.20, and \delta = (18 +11-17) degrees. Our results can be used to improve the world average uncertainty on the mixing parameter y by approximately 10%.Comment: Minor revisions, version accepted by PR

    Branching fractions for Y(3S) -> pi^0 h_b and psi(2S) -> pi^0 h_c

    Full text link
    Using e^+e^- collision data corresponding to 5.88M Y(3S) [25.9M psi(2S)] decays and acquired by the CLEO III [CLEO-c] detectors operating at CESR, we study the single-pion transitions from Y(3S) [psi(2S)] to the respective spin-singlet states h_{b[c]}. Utilizing only the momentum of suitably selected transition-pi^0 candidates, we obtain the upper limit B(Y(3S) -> pi^0 h_b) < 1.2\times 10^{-3} at 90% confidence level, and measure B(psi(2S) -> pi^0 h_c) = (9.0+-1.5+-1.3)\times 10^{-4}. Signal sensitivities are enhanced by excluding very asymmetric pi^0 -> gamma gamma candidates.Comment: 12 pages 4 figures, version published in Physical Review
    corecore