13 research outputs found
A BP Neural Network Based Technique for HIF Detection and Location on Distribution Systems With Distributed Generation
Abstract. High Impedance Faults (HIF) are faults of difficult detection and location while using traditional digital relaying. In this article it is presented a new proposal for detection and location of HIF's in distribution systems with distributed generation (DG), based on artificial neural networks. The methodology inputs are the local measured voltage and current phase components, supplying as output the detection, classification and location of the fault, when it occurs. The basic characteristics, the algorithm and comparative tests with other detection and location methodologies are presented in this article. The proposed scheme was tested in a simulation platform of a distribution system with DG. The comparative results of the technique with usual fault detection and location schemes show the high efficiency and robustness of the method
not available
Este trabalho apresenta um esquema de proteção direcional para sistemas de transmissão, baseado na utilização de redes neurais artificiais, tentando solucionar as principais limitações dos esquemas então existentes. As redes neurais artificiais constituem uma nova ferramenta para a proteção, onde várias das limitações apresentadas pelos esquemas convencionais podem ser solucionadas. A escolha desta abordagem para a proteção das linhas de transmissão é uma decisão fundamentada principalmente na capacidade de generalização e abstração inerentes às redes neurais artificiais. Estas características, se bem exploradas, podem prover uma alta qualidade de resposta, aliada a uma elevada velocidade de decisão. Outro fator de interesse é que, dependendo de como se realizar o treinamento da rede, poderia gerar-se metodologias de proteção capaz de suportar com eficiência mudanças na configuração do sistema. Isto geraria possibilidade de diagnósticos de falta com adequada confiabilidade que por sua vez não dependeria da configuração do sistema em si. O esquema de proteção proposto, foi simulado utilizando os softwares Alternative Transients Program (ATP) e Stuttgart Neural Network Simulator (SNNS). Também programas em Fortran foram desenvolvidos (filtro digital, reamostragem, identificação do ponto de ocorrência de falta, etc.) de forma a se representar adequadamente as condições reais de funcionamento do esquema de proteção. Testes simulando as mais diversas condições de falta foram realizados, de forma a se verificar a eficiência do esquema proposto. Os resultados demonstraram a capacidade da metodologia proposta de analisar corretamente os padrões provenientes de situações faltosas mesmo quando não vistas na fase de treinamento. Desta forma configurou-se um alto grau de generalização e abstração do esquema.This work presents a directional protection scheme for transmission systems, that uses artificial neural networks, and try to solve the main limitations of existing schemes. The artificial neural networks are a new tool for protection, were many of the limitations of conventional schemes can be solved. The choice of this approach for transmission fines protection is a decision based mainly on the capability of generalization and abstraction inherent to the artificial neural networks. These characteristics, if well explored, can provide a response of high quality, together with a high speed of decision. Another interesting Jactar is that, depending on how the learning on the artificial neural network is made, it can generate a protection methodology capable of supporting efficiently changes on the system configuration. This can generate reliable fault diagnostics, which is independent on network configuration. The proposed protection scheme was simulated using softwares like \"Alternative Transients Program\" (ATP) and \"Stuttgart Neural Network Simulator\" (SNNS). Other programs were written in Fortran (digital filter, resampling of data, fault poinf identification, etc.) in a way to correctly represent the real working conditions of the protection scheme. Tests simulating several fault conditions were made, in a way to verify the efficiency of the proposed scheme. The results demonstrate the capability of the proposed methodology of correctly analyzing the patterns generated from fault conditions even when not seen on the learning stage. In that way a high degree of generalization and abstraction of the scheme were configured
not available
Este trabalho apresenta um esquema de proteção direcional para sistemas de transmissão, baseado na utilização de redes neurais artificiais, tentando solucionar as principais limitações dos esquemas então existentes. As redes neurais artificiais constituem uma nova ferramenta para a proteção, onde várias das limitações apresentadas pelos esquemas convencionais podem ser solucionadas. A escolha desta abordagem para a proteção das linhas de transmissão é uma decisão fundamentada principalmente na capacidade de generalização e abstração inerentes às redes neurais artificiais. Estas características, se bem exploradas, podem prover uma alta qualidade de resposta, aliada a uma elevada velocidade de decisão. Outro fator de interesse é que, dependendo de como se realizar o treinamento da rede, poderia gerar-se metodologias de proteção capaz de suportar com eficiência mudanças na configuração do sistema. Isto geraria possibilidade de diagnósticos de falta com adequada confiabilidade que por sua vez não dependeria da configuração do sistema em si. O esquema de proteção proposto, foi simulado utilizando os softwares Alternative Transients Program (ATP) e Stuttgart Neural Network Simulator (SNNS). Também programas em Fortran foram desenvolvidos (filtro digital, reamostragem, identificação do ponto de ocorrência de falta, etc.) de forma a se representar adequadamente as condições reais de funcionamento do esquema de proteção. Testes simulando as mais diversas condições de falta foram realizados, de forma a se verificar a eficiência do esquema proposto. Os resultados demonstraram a capacidade da metodologia proposta de analisar corretamente os padrões provenientes de situações faltosas mesmo quando não vistas na fase de treinamento. Desta forma configurou-se um alto grau de generalização e abstração do esquema.This work presents a directional protection scheme for transmission systems, that uses artificial neural networks, and try to solve the main limitations of existing schemes. The artificial neural networks are a new tool for protection, were many of the limitations of conventional schemes can be solved. The choice of this approach for transmission fines protection is a decision based mainly on the capability of generalization and abstraction inherent to the artificial neural networks. These characteristics, if well explored, can provide a response of high quality, together with a high speed of decision. Another interesting Jactar is that, depending on how the learning on the artificial neural network is made, it can generate a protection methodology capable of supporting efficiently changes on the system configuration. This can generate reliable fault diagnostics, which is independent on network configuration. The proposed protection scheme was simulated using softwares like \"Alternative Transients Program\" (ATP) and \"Stuttgart Neural Network Simulator\" (SNNS). Other programs were written in Fortran (digital filter, resampling of data, fault poinf identification, etc.) in a way to correctly represent the real working conditions of the protection scheme. Tests simulating several fault conditions were made, in a way to verify the efficiency of the proposed scheme. The results demonstrate the capability of the proposed methodology of correctly analyzing the patterns generated from fault conditions even when not seen on the learning stage. In that way a high degree of generalization and abstraction of the scheme were configured
Phase Distance Relaying With Fault Resistance Compensation for Unbalanced Systems
This letter presents an extension of an existing ground distance relay algorithm to include phase distance relays. The algorithm uses a fault resistance estimation process in the phase domain, improving efficiency in the distance protection process. The results show that the algorithm is suitable for online applications, and that it has an independent performance from the fault resistance magnitude, the fault location, and the line asymmetry.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq
A topological approach to the identification of critical measurements in power-system state estimation
This paper presents a new topological methodology for critical measurements identification in observable networks. A measurement is said to be critical, in an observability sense, if its removal from the measurement set makes the associated system lose observability. The proposed methodology is based on the properties of both, observable measurement subnetworks (OMS) and redundant branch sets (RBS), for the first time proposed. To reduce the combinatorial bluster, the proposed method divides the measurements into two groups and classifies them into two phases. It allows identifying the critical measurements without any numerical calculation. Indeed, it is simple and fast. To clarify the proposed method and to demonstrate its simplicity, two examples are provided. The proposed method is successfully tested in the IEEE-14 bus system as well as in two realistic systems of Brazilian utilities. The first is a 121-bus system by ELETROSUL, and the other is a 383-bus system by Companhia Hidroelétrica do São Francisco (CHESF)
A topological approach to the identification of critical measurements in power-system state estimation
This paper presents a new topological methodology for critical measurements identification in observable networks. A measurement is said to be critical, in an observability sense, if its removal from the measurement set makes the associated system lose observability. The proposed methodology is based on the properties of both, observable measurement subnetworks (OMS) and redundant branch sets (RBS), for the first time proposed. To reduce the combinatorial bluster, the proposed method divides the measurements into two groups and classifies them into two phases. It allows identifying the critical measurements without any numerical calculation. Indeed, it is simple and fast. To clarify the proposed method and to demonstrate its simplicity, two examples are provided. The proposed method is successfully tested in the IEEE-14 bus system as well as in two realistic systems of Brazilian utilities. The first is a 121-bus system by ELETROSUL, and the other is a 383-bus system by Companhia Hidroelétrica do São Francisco (CHESF)
Hybrid fault diagnosis scheme implementation for power distribution systems automation
Power distribution automation and control are import-ant tools in the current restructured electricity markets. Unfortunately, due to its stochastic nature, distribution systems faults are hardly avoidable. This paper proposes a novel fault diagnosis scheme for power distribution systems, composed by three different processes: fault detection and classification, fault location, and fault section determination. The fault detection and classification technique is wavelet based. The fault-location technique is impedance based and uses local voltage and current fundamental phasors. The fault section determination method is artificial neural network based and uses the local current and voltage signals to estimate the faulted section. The proposed hybrid scheme was validated through Alternate Transient Program/Electromagentic Transients Program simulations and was implemented as embedded software. It is currently used as a fault diagnosis tool in a Southern Brazilian power distribution company.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Companhia Estadual de Distribuicao de Energia Eletrica do Rio Grande do Sul (CEEE-D)[TPWRD-00466-2007
Extended Fault-Location Formulation for Power Distribution Systems
In this paper, an extended impedance-based fault-location formulation for generalized distribution systems is presented. The majority of distribution feeders are characterized by having several laterals, nonsymmetrical lines, highly unbalanced operation, and time-varying loads. These characteristics compromise traditional fault-location methods performance. The proposed method uses only local voltages and currents as input data. The current load profile is obtained through these measurements. The formulation considers load variation effects and different fault types. Results are obtained from numerical simulations by using a real distribution system from the Electrical Energy Distribution State Company of Rio Grande do Sul (CEEE-D), Southern Brazil. Comparative results show the technique robustness with respect to fault type and traditional fault-location problems, such as fault distance, resistance, inception angle, and load variation. The formulation was implemented as embedded software and is currently used at CEEE-D`s distribution operation center.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Companhia Estadual de Distribuicao de Energia Eletrica do Rio Grande do Sul (CEEE-D)[TPWRD-00673-2007