9 research outputs found

    āļ­āļąāļ•āļĢāļēāļāļēāļĢāđ„āļŦāļĨāļ•āļēāļĄāđāļ™āļ§āļ‚āļ­āļ‡āđāļœāđˆāļ™āļ§āļąāļŠāļ”āļļāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļˆāļĩāđ‚āļ­āļ„āļ­āļĄāđ‚āļžāļŠāļīāļ•āļ āļēāļĒāđƒāļ•āđ‰āļŠāļ āļēāļ§āļ°āļ—āļĩāđˆāļ–āļđāļāļ›āļĢāļ°āļāļšāļ”āđ‰āļ§āļĒāļ”āļīāļ™

    Get PDF
    This research investigates the flow behavior of geocomposite materials in the laboratory testing under pressure stress, hydraulic gradient and soil Surrounded, a modified transmissivity test apparatus was developed to estimate the transmissivity of geocomposite under real working conditions. Two scenarios were conducted in which the geocomposite material was placed on a soil layer for caseⅠ, for the second scenario the geocomposite was embedded between soil layers, subsequently the soil-geocomposite systems were subjected to different magnitudes of vertical effective stress of 50, 100, and 150 kPa, respectively. The obtained results indicate that the transmissivity of geocomposite slightly changed for the first condition (caseⅠ) compared to conventional method, namely ASTM D 4716, whereas there was a significant change found in the caseⅡ. This might be due to the effect of other factors that occurred in the second scenario such as clogging, bending of geocomposite layer leading to a decrease in the performance of geocomposite

    The Stability Investigation of Flood Wall Structure Using Plaxis 2D

    Get PDF
    Nava Nakorn Industrial is a home of world-class companies that serves many types of industries located in Pathumthani Province, Thailand with an area of more than 10 km2. In 2011, the natural disaster, flooding up to about 4.7 m for 2 months caused the impacts in this industrial zone. The permanent flood wall protection was then built around the industrial area to ascertain the safety and to build the confidence for the investors. The evaluation of the safety and stability of the flood wall against the flooding problem is carried out in this research and divided into three main assessments, including site investigation and soil exploration, examination of the existing flood wall structures, and finite element analysis of its stability using Plaxis 2D. The site investigation and soil exploration, included boring, Atterberg limits, consolidation and triaxial tests to explore the basic and engineering parameters. The mechanical tests, including Schmidt Hammer test, Ferro scan test, Hardness test, as well as coring and compressive strength test of concrete were conducted. The finite element analysis results showed that the external factor of safety at a water level of +5.20 m (MSL) over a 4 months period was 6.717 higher than the designer specified at 1.50. Meanwhile, the bending moment and shear force values were 6.185 kN-m/m and 6.697 kN/m, respectively, which are lower than the allowable bending moment and shear force of 17.50 kN-m/m and 62.10 kN/m. In other words, the internal factor of safety against bending moment and shear force were 2.83 and 9.27, respectively. As such, the flood wall protection provides sufficient internal and external stability with low water permeability under the foundation of the flood wall for a period of 4months at water level at +5.20 m. This research confirms there is no impact on the rise of water level within the studied area due to the flooding problem for a period of 4 months

    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™ āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāļ­āļīāļĨāļīāđ€āļĄāļ™āļ•āđŒ āđāļšāļš 3 āļĄāļīāļ•āļī āđ€āļ—āļĩāļĒāļšāļāļąāļšāļœāļĨāļ•āļĢāļ§āļˆāļ§āļąāļ”āđƒāļ™āļŠāļ™āļēāļĄ

    Get PDF
    āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ—āļĩāđˆāđ€āļŠāļ·āđˆāļ­āļĄāļ•āđˆāļ­āđ€āļ‚āđ‰āļēāļāļąāļšāđāļœāđˆāļ™āļœāļ™āļąāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāđ€āļŦāļĨāđ‡āļāļ•āļēāļĄāļĒāļēāļ§āđāļĨāļ°āđ€āļŦāļĨāđ‡āļāļ•āļēāļĄāļ‚āļ§āļēāļ‡ āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāļ•āļēāļĄāļĒāļēāļ§āļ—āļģāļĄāļēāļˆāļēāļāđ€āļŦāļĨāđ‡āļāļ‚āđ‰āļ­āļ­āđ‰āļ­āļĒ āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāđ€āļŦāļĨāđ‡āļāļ•āļēāļĄāļ‚āļ§āļēāļ‡āļ—āļģāļĄāļēāļˆāļēāļāđ€āļŦāļĨāđ‡āļāļ‰āļēāļāļ‹āļķāđˆāļ‡āļ—āļģāđƒāļŦāđ‰āđāļĢāļ‡āļ•āđ‰āļēāļ™āļ—āļēāļ™āđāļĢāļ‡āļ”āļķāļ‡āđāļšāļāļ—āļēāļ™āļŠāļđāļ‡ āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļ—āļĩāđˆāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļē āļĄāļĩāļ„āļ§āļēāļĄāļŠāļđāļ‡ 9.75 āđ€āļĄāļ•āļĢ āđāļĨāļ°āļ„āļ§āļēāļĄāļāļ§āđ‰āļēāļ‡ 14.80 āđ€āļĄāļ•āļĢ āļŠāļĢāđ‰āļēāļ‡āļ‚āļķāđ‰āļ™āļ—āļĩāđˆāđ€āļŦāļĄāļ·āļ­āļ‡āđāļĄāđˆāđ€āļĄāļēāļ° āļˆāļąāļ‡āļŦāļ§āļąāļ”āļĨāļģāļ›āļēāļ‡ āļ•āļąāđ‰āļ‡āļ­āļĒāļđāđˆāļšāļĢāļīāđ€āļ§āļ“āļ”āđ‰āļēāļ™āļŦāļ™āđ‰āļēāđ€āļ™āļīāļ™āļ”āļīāļ™āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļ™āļ›āļĢāļ°āļĄāļēāļ“ 48 āļ­āļ‡āļĻāļē āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļ–āļđāļāđ€āļŠāļĢāļīāļĄāļāļģāļĨāļąāļ‡āļ”āđ‰āļ§āļĒāđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ—āļąāđ‰āļ‡ 3 āļ”āđ‰āļēāļ™āļ‚āļ­āļ‡āļāļģāđāļžāļ‡ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āļĻāļķāļāļĐāļēāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļœāļĨāļ•āļĢāļ§āļˆāļ§āļąāļ”āļˆāļĢāļīāļ‡āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđƒāļ™āļŠāļ™āļēāļĄ āļāļąāļšāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāļ­āļīāļĨāļīāđ€āļĄāļ™āļ•āđŒāđāļšāļš 3 āļĄāļīāļ•āļī āđ‚āļ”āļĒāđ‚āļ›āļĢāđāļāļĢāļĄ PLAXIS 3D āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļ™āļģāđ€āļŠāļ™āļ­āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™ āđƒāļ™ 3 āļŠāļ āļēāļ§āļ° āđ„āļ”āđ‰āđāļāđˆ āļŦāļĨāļąāļ‡āļŠāļīāđ‰āļ™āļŠāļļāļ”āļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡ āļāļēāļĢāļ•āļīāļ”āļ•āļąāđ‰āļ‡āļ—āđˆāļēāđ€āļ—āļĩāļĒāļšāļĢāļ–āļšāļĢāļĢāļ—āļļāļÂ  āđāļĨāļ°āļ‚āļ“āļ°āđ€āļ›āļīāļ”āđƒāļŠāđ‰āļ‡āļēāļ™ āļ‹āļķāđˆāļ‡āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāļ—āļĢāļļāļ”āļ•āļąāļ§āđƒāļ™āđāļ™āļ§āļ”āļīāđˆāļ‡āļ‚āļ­āļ‡āļ”āļīāļ™āļ–āļĄāļ—āļĩāđˆāļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒ Settlement plate, āļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ•āļąāļ§āļ”āđ‰āļēāļ™āļ‚āđ‰āļēāļ‡ āļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒ Inclinometer āđāļĨāļ°āđāļĢāļ‡āļ”āļķāļ‡āđƒāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™ āļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļāļˆāļ§āļąāļ”āļ„āļ§āļēāļĄāđ€āļ„āļĢāļĩāļĒāļ” āļˆāļēāļāļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāļ—āļĢāļļāļ”āļ•āļąāļ§āđƒāļ™āļŠāļ āļēāļ§āļ°āļāđˆāļ­āļ™āđ€āļ›āļīāļ”āđƒāļŠāđ‰āļ‡āļēāļ™āļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļœāļĨāļāļēāļĢāļ•āļĢāļ§āļˆāļ§āļąāļ”āđāļĨāļ°āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āđāļ•āđˆāđ€āļĄāļ·āđˆāļ­āļ—āļģāļāļēāļĢāđ€āļ›āļīāļ”āđƒāļŠāđ‰āļ‡āļēāļ™āđ„āļ›āđāļĨāđ‰āļ§ (āļ—āļĩāđˆāđ€āļ§āļĨāļē 270 āļ§āļąāļ™ āļŦāļĨāļąāļ‡āđ€āļĢāļīāđˆāļĄāļ•āđ‰āļ™āļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡) āļāļēāļĢāļ—āļĢāļļāļ”āļ•āļąāļ§āļŠāļļāļ”āļ—āđ‰āļēāļĒāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļĄāļĩāļ„āđˆāļēāđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡āļāļąāļ™ āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ•āļąāļ§āļ”āđ‰āļēāļ™āļ‚āđ‰āļēāļ‡āļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļ”āđ‰āļēāļ™āļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļĄāļĩāļĢāļđāļ›āđāļšāļšāđ€āļ”āļĩāļĒāļ§āļāļąāļ™ āļœāļĨāļāļēāļĢāļ•āļĢāļ§āļˆāļ§āļąāļ”āļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ•āļąāļ§āļ”āđ‰āļēāļ™āļ‚āđ‰āļēāļ‡āļĄāļĩāļ„āđˆāļēāļŠāļđāļ‡āļāļ§āđˆāļēāļœāļĨāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āđāļĨāļ°āđāļĢāļ‡āļ”āļķāļ‡āļŠāļđāļ‡āļŠāļļāļ”āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđƒāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ‚āļ­āļ‡āļ—āļąāđ‰āļ‡āļāļēāļĢāļ•āļĢāļ§āļˆāļ§āļąāļ”āđāļĨāļ°āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āļĄāļĩāļ„āļ§āļēāļĄāđƒāļāļĨāđ‰āđ€āļ„āļĩāļĒāļ‡āļāļąāļ™āđāļĨāļ°āļĢāļ°āļ™āļēāļšāđāļĢāļ‡āļ”āļķāļ‡āļŠāļđāļ‡āļŠāļļāļ”āļŠāļēāļĄāļēāļĢāļ–āļ›āļĢāļ°āļĄāļēāļ“āđ„āļ”āđ‰āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļ‚āļ­āļ‡ AASHTO (2002)āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļāļēāļĢāđ€āļŠāļĢāļīāļĄāđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāļ•āļēāļĄāļĒāļēāļ§ āļ‹āļķāđˆāļ‡āļ—āļģāļĄāļēāļˆāļēāļāđ€āļŦāļĨāđ‡āļāļ‚āđ‰āļ­āļ­āđ‰āļ­āļĒ āđāļĨāļ°āļŠāļļāļ”āļ‚āļ­āļ‡āđ€āļŦāļĨāđ‡āļāļ‰āļēāļāļ—āļĩāđˆāļ•āļīāļ”āļ•āļąāđ‰āļ‡āļšāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāļ•āļēāļĄāļĒāļēāļ§āđƒāļ™āļ—āļīāļĻāļ—āļēāļ‡āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļ‰āļēāļāļāļąāļ™ āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļ—āļĩāđˆāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļĢāđ‰āļēāļ‡āļ‚āļķāđ‰āļ™āļ—āļĩāđˆāđ€āļŦāļĄāļ·āļ­āļ‡āđāļĄāđˆāđ€āļĄāļēāļ° āļˆāļąāļ‡āļŦāļ§āļąāļ”āļĨāļģāļ›āļēāļ‡ āļ•āļąāđ‰āļ‡āļ­āļĒāļđāđˆāļšāļĢāļīāđ€āļ§āļ“āļ”āđ‰āļēāļ™āļŦāļ™āđ‰āļēāđ€āļ™āļīāļ™āļ”āļīāļ™āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļ™āļ›āļĢāļ°āļĄāļēāļ“ 48 āļ­āļ‡āļĻāļē āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļĄāļĩāļ„āļ§āļēāļĄāļāļ§āđ‰āļēāļ‡āđ€āļ—āđˆāļēāļāļąāļš 14.80 āđ€āļĄāļ•āļĢ āđāļĨāļ°āļĄāļĩāļ„āļ§āļēāļĄāļŠāļđāļ‡āđ€āļ—āđˆāļēāļāļąāļš 9.75 āđ€āļĄāļ•āļĢ āđ€āļŠāļĢāļīāļĄāļāļģāļĨāļąāļ‡āļ”āđ‰āļ§āļĒāđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™āļ—āļąāđ‰āļ‡ 3 āļ”āđ‰āļēāļ™āļ‚āļ­āļ‡āļāļģāđāļžāļ‡ āļˆāļģāļ™āļ§āļ™ 14 āļŠāļąāđ‰āļ™ āđƒāļŠāđ‰āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡āļ—āļąāđ‰āļ‡āļŠāļīāđ‰āļ™ 20 āļ§āļąāļ™ āļ‹āļķāđˆāļ‡āļāļēāļĢāļ„āļģāļ™āļ§āļ“āđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™āļ”āđ‰āļ§āļĒāļĢāļđāļ›āđāļšāļš 2 āļĄāļīāļ•āļī āļ­āļēāļˆ āđ„āļĄāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļœāļĨāļ•āļĢāļ§āļˆāļ§āļąāļ”āļˆāļĢāļīāļ‡āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđƒāļ™āļŠāļ™āļēāļĄ āļāļąāļšāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāļ­āļīāļĨāļīāđ€āļĄāļ™āļ•āđŒāđāļšāļš 3 āļĄāļīāļ•āļī āđ‚āļ”āļĒāđ‚āļ›āļĢāđāļāļĢāļĄ PLAXIS 3D āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļ™āļģāđ€āļŠāļ™āļ­āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļāļģāđāļžāļ‡āļāļąāļ™āļ”āļīāļ™ āļ‹āļķāđˆāļ‡āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ āļāļēāļĢāļ—āļĢāļļāļ”āļ•āļąāļ§āđƒāļ™āđāļ™āļ§āļ”āļīāđˆāļ‡āļ‚āļ­āļ‡āļ”āļīāļ™āļ–āļĄ āļ—āļĩāđˆāļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒ Settlement plate, āļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ•āļąāļ§āļ”āđ‰āļēāļ™āļ‚āđ‰āļēāļ‡ āļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒ Inclinometer āđāļĨāļ°āđāļĢāļ‡āļ”āļķāļ‡āđƒāļ™āđ€āļŦāļĨāđ‡āļāđ€āļŠāļĢāļīāļĄāđāļšāļāļ—āļēāļ™ āđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ•āļĢāļ§āļˆāļ§āļąāļ”āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļāļˆāļ§āļąāļ”āļ„āļ§āļēāļĄāđ€āļ„āļĢāļĩāļĒāļ” āđƒāļ™ 3 āļŠāļ āļēāļ§āļ° āđ„āļ”āđ‰āđāļāđˆ āļŦāļĨāļąāļ‡āļŠāļīāđ‰āļ™āļŠāļļāļ”āļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡ āļāļēāļĢāļ•āļīāļ”āļ•āļąāđ‰āļ‡āļ—āđˆāļēāđ€āļ—āļĩāļĒāļšāļĢāļ–āļšāļĢāļĢāļ—āļļāļÂ  āđāļĨāļ°āļ‚āļ“āļ°āđ€āļ›āļīāļ”āđƒāļŠāđ‰āļ‡āļē

    āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ•āđ‰āļ™āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļ„āļ§āļēāļĄāļāļ·āļ”āļ‚āļ­āļ‡āļœāļīāļ§āļˆāļĢāļēāļˆāļĢāđāļĨāļ°āļĢāļ°āļĒāļ°āļĢāđˆāļ­āļ‡āļĨāđ‰āļ­āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āļˆāļģāļ™āļ§āļ™āļĢāļ­āļšāļ§āļīāđˆāļ‡

    Get PDF
    Literature reported that number of accidents was directly related to pavement skid resistance. Hence, a key element to enhance road safety is to maintain skid resistance of pavement. Due to no available machine to measure pavement skid resistance under cycles of wheel track, a prototype machine for measuring pavement skid resistance and rutting under various simulated cycles of wheel track was developed This prototype machine is flexible for future modification; i.e., various factors relating to traffic load such as wheel track cycle, and wheel track load can be adjusted using a software. Results of cyclic skid and rutting tests on an asphaltic pavement specimen show that rutting and rapid deterioration in pavement skid resistance are found at first 1000 cycles of wheel track. The rate of deterioration decreases with increasing wheel track cycle

    Strength of sustainable non-bearing masonry units manufactured from calcium carbide residue and fly ash

    No full text
    This paper aims to study the viability of using Calcium Carbide Residue (CCR) and fly ash (FA) as a cementing agent (binder) for the manufacture of non-bearing masonry units without Portland Cement (PC). CCR and FA are waste products from acetylene gas factories and power plants, respectively. The test samples were made up at a binder to stone dust ratio of 1:8 by weight. The studied water to binder (W/B) ratios were 0.50, 0.75 and 1.00, and the CCR/FA ratios were 80:20, 60:40 and 40:60. The W/B ratio of 0.75 and CCR/FA ratio of 40:60 were found to be an optimal mix proportion providing the highest both unit weight and strength. The higher CCR/FA ratios provide lower strength values because the silica and alumina in FA are insufficient to react with abundant Ca(OH)2 in the CCR for the pozzolanic reaction. The optimal mix proportion provides the strength of the CCR-FA based material greater than 20 MPa, which is acceptable for non-bearing masonry unit. The cost analysis showed that the material costs of the CCR- FA masonry unit were 40% lower than those of the PC masonry unit. Besides the cost effectiveness, the outcome of this research would divert significant quantity of CCR from landfills and considerably reduce carbon emissions due to PC production

    Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer

    No full text
    This research investigates strength development and the carbon footprint of Calcium Carbide Residue (CCR) and Fly Ash (FA) based geopolymer stabilized marine clay. Coode Island Silt (CIS), a soft and highly compressible marine clay present in Melbourne, Australia was investigated for stabilization with the CCR and FA geopolymers. CCR is an industrial by-product obtained from acetylene gas production, high in Ca(OH)2 and was used as a green additive to improve strength of the FA based geopolymer binder. The liquid alkaline activator used was a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide (NaOH). The influential factors studied for the geopolymerization process were Na2SiO3/NaOH ratio, NaOH concentration, L/FA ratio, initial water content, FA content, CCR content, curing temperature and curing time. The strength of stabilized CIS was found to be strongly dependent upon FA content and NaOH concentration. The optimal ingredient providing the highest strength was found to be dependent on water content. Higher water contents were found to dilute the NaOH concentration, hence the optimal L/FA increases and the optimal Na2SiO3/NaOH decreases as the water content present in the clay increases. The maximum strength of the FA geopolymer (without CCR) stabilized CIS was found at Na2SiO3/NaOH = 70:30 ratio and L/FA = 1.0 for clay water content at liquid limit (LL). The role of CCR on the strength of FA geopolymer stabilized CIS can be classified into three zones: inactive, active and quasi-inert. The active zone where CCR content is between 7% and 12% is recommended in practice. The 12% CCR addition can improve up to 1.5 times the strength of the FA geopolymer. The carbon footprints of the geopolymer stabilized soils were approximately 22%, 23% and 43% lower than those of cement stabilized soil at the same strengths of 400 kPa, 600 kPa and 800 kPa. The reduction in carbon footprints at high strength indicates the effectiveness of FA geopolymer as an alternative and effective green soil stabilizer to traditional Portland cement

    āļāļēāļĢāļšāļĢāļīāļŦāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ™āđ‰āļģāđ€āļŠāļĩāļĒāđāļĨāļ°āđāļ™āļ§āļ—āļēāļ‡āļāļēāļĢāđ€āļĨāļ·āļ­āļāļĢāļ°āļšāļšāļšāļģāļšāļąāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļąāļšāļŠāļļāļĄāļŠāļ™Wastewater Management and Guidelines for Choosing the Appropriate Wastewater Treatment System for the Congested Community

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ™āļģāđ€āļŠāļ™āļ­āđāļ™āļ§āļ—āļēāļ‡āļāļēāļĢāļšāļĢāļīāļŦāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļąāļšāļŠāļļāļĄāļŠāļ™āļ—āļĩāđˆāļĄāļĩāļžāļ·āđ‰āļ™āļ—āļĩāđˆāđāļ­āļ­āļąāļ” āđ‚āļ”āļĒāļ‚āļ­āļšāđ€āļ‚āļ•āļāļēāļĢāļĻāļķāļāļĐāļēāļ­āļĒāļđāđˆāđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ­āļ‡āļ„āđŒāļāļēāļĢāļšāļĢāļīāļŦāļēāļĢāļŠāđˆāļ§āļ™āļ•āļģāļšāļĨāļˆāļ­āļŦāļ­āļāļąāđˆāļ‡āļ•āļ°āļ§āļąāļ™āļ•āļ āļ­āļģāđ€āļ āļ­āđ€āļĄāļ·āļ­āļ‡ āļˆāļąāļ‡āļŦāļ§āļąāļ”āļ™āļ„āļĢāļĢāļēāļŠāļŠāļĩāļĄāļē āļĄāļĩāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ„āļĢāļ­āļšāļ„āļĨāļļāļĄ 4 āļŦāļĄāļđāđˆāļšāđ‰āļēāļ™ āđāļĨāļ°āđ€āļ›āđ‡āļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ—āļĩāđˆāļĄāļĩāļ›āļąāļāļŦāļēāđƒāļ™āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļĢāļ°āļšāļšāļĢāļ§āļšāļĢāļ§āļĄāđāļĨāļ°āļĢāļ°āļšāļšāļšāļģāļšāļąāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒ āļ—āļģāđƒāļŦāđ‰āđ€āļāļīāļ”āļ›āļąāļāļŦāļēāļ™āđ‰āļģāļ—āđˆāļ§āļĄāļ‚āļąāļ‡āđ€āļ§āļĨāļēāļāļ™āļ•āļ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āļĻāļķāļāļĐāļēāļĢāļ°āļšāļšāļĢāļ§āļšāļĢāļ§āļĄāđāļĨāļ°āļĢāļ°āļšāļšāļšāļģāļšāļąāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđƒāļŦāđ‰āđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļąāļšāļŠāļļāļĄāļŠāļ™āļ•āļģāļšāļĨāļˆāļ­āļŦāļ­āļāļąāđˆāļ‡āļ•āļ°āļ§āļąāļ™āļ•āļ āđ‚āļ”āļĒāļĄāļĩāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ 1) āļāļēāļĢāļŠāļģāļĢāļ§āļˆāđāļĨāļ°āļˆāļąāļ”āļ—āļģāđāļšāļšāđāļœāļ™āļ—āļĩāđˆāļĢāļ°āļ”āļąāļšāļ—āđˆāļ­āđāļĨāļ°āļĢāļēāļ‡āļĢāļ°āļšāļēāļĒāļ™āđ‰āļģ āđāļĨāļ° 2) āļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ›āļĢāļīāļĄāļēāļ“āđāļĨāļ°āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āļļāļ“āļ āļēāļžāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļ•āļģāļšāļĨāļˆāļ­āļŦāļ­āļāļąāđˆāļ‡āļ•āļ°āļ§āļąāļ™āļ•āļāļ„āļ§āļĢāļĄāļĩāļ—āđˆāļ­āļĢāļ°āļšāļēāļĒāļ™āđ‰āļģāļŦāļĨāļąāļāļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļ‚āđ‰āļēāļ‡āļ–āļ™āļ™āļĢāļąāļ•āļ™āļžāļīāļ˜āļēāļ™ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ—āđˆāļ­āļ‚āļ™āļēāļ”āđ€āļŠāđ‰āļ™āļœāđˆāļēāļ™āļĻāļđāļ™āļĒāđŒāļāļĨāļēāļ‡ 1.00 āđ€āļĄāļ•āļĢ āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āļāļēāļĢāļĢāļ°āļšāļēāļĒāļ™āđ‰āļģāļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđāļĨāļ°āļĨāļ”āļ›āļąāļāļŦāļēāļāļēāļĢāļ—āđˆāļ§āļĄāļ‚āļąāļ‡āļ‚āļ­āļ‡āļ™āđ‰āļģāļœāļīāļ§āļ”āļīāļ™ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļ„āļ§āļĢāļŠāļĢāđ‰āļēāļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļĢāļąāļšāļ™āđ‰āļģāđ€āļžāļ·āđˆāļ­āđ€āļ›āđ‡āļ™āļˆāļļāļ”āļŦāļ™āđˆāļ§āļ‡āļ™āđ‰āļģāļāđˆāļ­āļ™āļ—āļĩāđˆāļˆāļ°āļĢāļ°āļšāļēāļĒāđ€āļ‚āđ‰āļēāļŠāļđāđˆāđ‚āļ„āļĢāļ‡āļ‚āđˆāļēāļĒāļĢāļ°āļšāļēāļĒāļ™āđ‰āļģāđāļĨāļ°āļŠāđˆāļ‡āđ„āļ›āļĒāļąāļ‡āļˆāļļāļ”āļĢāļąāļšāļ™āđ‰āļģāļ•āļēāļĄāļ„āļĨāļ­āļ‡āļŠāļĨāļ›āļĢāļ°āļ—āļēāļ™āđāļĨāļ°āļ„āļĨāļ­āļ‡āļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī āļœāļĨāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āļļāļ“āļ āļēāļžāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ—āļąāđ‰āļ‡ 4 āļŦāļĄāļđāđˆāļšāđ‰āļēāļ™ āļžāļšāļ›āļĢāļīāļĄāļēāļ“āļŠāļēāļĢāļ›āļ™āđ€āļ›āļ·āđ‰āļ­āļ™āđƒāļ™āļ™āđ‰āļģāļŠāļđāļ‡āļĄāļēāļāļāļ§āđˆāļēāđ€āļāļ“āļ‘āđŒāļ‚āļ­āļ‡āļĄāļēāļ•āļĢāļāļēāļ™āļ™āđ‰āļģāļœāļīāļ§āļ”āļīāļ™ āļ•āļēāļĄāļžāļĢāļ°āļĢāļēāļŠāļšāļąāļāļāļąāļ•āļīāļŠāđˆāļ‡āđ€āļŠāļĢāļīāļĄāđāļĨāļ°āļĢāļąāļāļĐāļēāļ„āļļāļ“āļ āļēāļžāļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄāđāļŦāđˆāļ‡āļŠāļēāļ•āļī āļž.āļĻ. 2535 āļĄāļēāļ•āļĢāļē 32 āļĢāļ°āļ”āļąāļšāļāļēāļĢāļ›āļ™āđ€āļ›āļ·āđ‰āļ­āļ™āļˆāļąāļ”āļ­āļĒāļđāđˆāđƒāļ™āđ€āļāļ“āļ‘āđŒāļ›āļĢāļ°āđ€āļ āļ—āļ—āļĩāđˆ 5 āļ‹āļķāđˆāļ‡āļˆāļģāđ€āļ›āđ‡āļ™āļˆāļ°āļ•āđ‰āļ­āļ‡āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļŸāļ·āđ‰āļ™āļŸāļđāļ„āļļāļ“āļ āļēāļžāļ‚āļ­āļ‡āļ™āđ‰āļģāļ­āļĒāđˆāļēāļ‡āđ€āļĢāđˆāļ‡āļ”āđˆāļ§āļ™ āļ§āļīāļ˜āļĩāļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļšāļĢāļīāļŦāļēāļĢāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļąāļšāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ§āļīāļˆāļąāļĒāļ„āļ·āļ­ āļāļēāļĢāđ€āļĨāļ·āļ­āļāđƒāļŠāđ‰āļĢāļ°āļšāļšāļšāļģāļšāļąāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđāļšāļšāļšāđˆāļ­āļ›āļĢāļąāļšāđ€āļŠāļ–āļĩāļĒāļĢ āđ€āļžāļĢāļēāļ°āđ€āļ›āđ‡āļ™āļĢāļ°āļšāļšāļ—āļĩāđˆāļĄāļĩāļ„āđˆāļēāļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡āđāļĨāļ°āļ„āđˆāļēāļ”āļđāđāļĨāļĢāļąāļāļĐāļēāļ•āđˆāļģ āļĢāļ§āļĄāļ—āļąāđ‰āļ‡āļĄāļĩāļ§āļīāļ˜āļĩāļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ°āļšāļšāđ„āļĄāđˆāļĒāļļāđˆāļ‡āļĒāļēāļāļ‹āļąāļšāļ‹āđ‰āļ­āļ™This research presents a wastewater management approach that is appropriate for communities with congested areas. Four villages in the Western Region of Joho Subdistrict Administrative Organization, Nakhon Ratchasima Province, Thailand, encounter problems with wastewater collection and treatment management. Due to an insufficient drainage system, the heavy precipitation in the surrounding area causes the pain of waterlogging with untreated wastewater. This research aims to study and reform the wastewater collection and treatment system by conducting 1) a topographic survey and mapping of existing drainage pipes and gutters, and 2) a test and analysis of the quantity and quality of wastewater. The analysis revealed that two main pipes with a diameter of 1.00 m should be installed on each side of the Rattanaphithan Road to drain the water. In addition, the water catchment should be built efficiently as a watershed before the drainage system along the irrigation canals and natural canals. The wastewater quality from all four villages was found to have a high content of contaminants when compared with standard criteria for surface water in accordance with the Enhancement and Conservation of National Environmental Quality Act, B.E. 2535, Section 32. This high-water contamination was classified in category 5, which requires urgent water quality restoration. The appropriate management approach for this study site is a stabilization pond for wastewater treatment because its construction and maintenance costs are low, and the operating system is not complicated

    Unit weight, strength and microstructure of a water treatment sludge-fly ash lightweight cellular geopolymer

    No full text
    A water treatment sludge–fly ash lightweight cellular geopolymer (WTS–FA LCG) is investigated in this research with the intention to develop an alternative green construction and building material, without using Portland cement as a cementing agent. Two waste by-products: WTS from the Bang Khen water treatment plants of the Metropolitan Water Work Authority of Thailand (MWA) and FA from the Mae Moh power plants of the Electricity Generating Authority of Thailand (EGAT) were used as an aggregate and a precursor, respectively. The liquid alkaline activator (L) used was a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH). The unit weight and strength of WTS–FA LCG heated at 65 °C for various influential factors are investigated and presented in this paper. The various influential factors studied include mixing ingredient (air content (Ac), liquid alkaline activator content (L) and Na2SiO3/NaOH), heat duration and curing time. Scanning electron microscopy (SEM) analysis was undertaken to investigate the role of influential factors on unit weight and strength. The test results indicate that the L content at liquid limit state (LL) is optimal for manufacturing WTS–FA LCG for all Na2SiO3/NaOH ratios, heat durations and air contents tested for which the highest strength is attained. Although the unit weight of WTS–FA LCG significantly reduces when L > LL, it is not economical to manufacture WTS–FA LCG at L > LL due to the drastic strength reduction. The addition of Ac at L = LL is found to be an appropriate means to reduce the unit weight and minimize the strength reduction. The maximum strengths at L = LL for various air contents are found at Na2SiO3/NaOH of 80:20 and heat duration of 72 h. The longer heat durations of 96 and 120 h cause the loss of moisture, thereby resulting in micro-cracks and strength reduction. The WTS was found to be viable alternative aggregate to develop WTS–FA LCG, thereby resulting in this waste material traditionally destined for landfills to be used sustainably as a valuable resource

    Generalized Interface Shear Strength Equation for Recycled Materials Reinforced with Geogrids

    No full text
    In this research, large direct shear tests were conducted to evaluate the interface shear strength between reclaimed asphalt pavement (RAP) and kenaf geogrid (RAP–geogrid) and to also assess their viability as an environmentally friendly base course material. The influence of factors such as the gradation of RAP particles and aperture sizes of geogrid (D) on interface shear strength of the RAP–geogrid interface was evaluated under different normal stresses. A critical analysis was conducted on the present and previous test data on geogrids reinforced recycled materials. The D/FD, in which FD is the recycled materials’ particle content finer than the aperture of geogrid, was proposed as a prime parameter governing the interface shear strength. A generalized equation was proposed for predicting the interface shear strength of the form: α = a(D/FD) + b, where α is the interface shear strength coefficient, which is the ratio of the interface shear strength to the shear strength of recycled material, and a and b are constants. The constant values of a and b were found to be dependent upon types of recycled material, irrespective of types of geogrids. A stepwise procedure to determine variable a, which is required for analysis and design of geogrids reinforced recycled materials in roads with various gradations was also suggested
    corecore