9 research outputs found
āļāļąāļāļĢāļēāļāļēāļĢāđāļŦāļĨāļāļēāļĄāđāļāļ§āļāļāļāđāļāđāļāļ§āļąāļŠāļāļļāļŠāļąāļāđāļāļĢāļēāļ°āļŦāđāļāļĩāđāļāļāļāļĄāđāļāļŠāļīāļāļ āļēāļĒāđāļāđāļŠāļ āļēāļ§āļ°āļāļĩāđāļāļđāļāļāļĢāļ°āļāļāļāđāļ§āļĒāļāļīāļ
This research investigates the flow behavior of geocomposite materials in the laboratory testing under pressure stress, hydraulic gradient and soil Surrounded, a modified transmissivity test apparatus was developed to estimate the transmissivity of geocomposite under real working conditions. Two scenarios were conducted in which the geocomposite material was placed on a soil layer for caseâ
, for the second scenario the geocomposite was embedded between soil layers, subsequently the soil-geocomposite systems were subjected to different magnitudes of vertical effective stress of 50, 100, and 150 kPa, respectively. The obtained results indicate that the transmissivity of geocomposite slightly changed for the first condition (caseâ
) compared to conventional method, namely ASTM D 4716, whereas there was a significant change found in the caseâ
Ą. This might be due to the effect of other factors that occurred in the second scenario such as clogging, bending of geocomposite layer leading to a decrease in the performance of geocomposite
The Stability Investigation of Flood Wall Structure Using Plaxis 2D
Nava Nakorn Industrial is a home of world-class companies that serves many types of industries located in Pathumthani Province, Thailand with an area of more than 10 km2. In 2011, the natural disaster, flooding up to about 4.7 m for 2 months caused the impacts in this industrial zone. The permanent flood wall protection was then built around the industrial area to ascertain the safety and to build the confidence for the investors. The evaluation of the safety and stability of the flood wall against the flooding problem is carried out in this research and divided into three main assessments, including site investigation and soil exploration, examination of the existing flood wall structures, and finite element analysis of its stability using Plaxis 2D. The site investigation and soil exploration, included boring, Atterberg limits, consolidation and triaxial tests to explore the basic and engineering parameters. The mechanical tests, including Schmidt Hammer test, Ferro scan test, Hardness test, as well as coring and compressive strength test of concrete were conducted. The finite element analysis results showed that the external factor of safety at a water level of +5.20 m (MSL) over a 4 months period was 6.717 higher than the designer specified at 1.50. Meanwhile, the bending moment and shear force values were 6.185 kN-m/m and 6.697 kN/m, respectively, which are lower than the allowable bending moment and shear force of 17.50 kN-m/m and 62.10 kN/m. In other words, the internal factor of safety against bending moment and shear force were 2.83 and 9.27, respectively. As such, the flood wall protection provides sufficient internal and external stability with low water permeability under the foundation of the flood wall for a period of 4months at water level at +5.20 m. This research confirms there is no impact on the rise of water level within the studied area due to the flooding problem for a period of 4 months
āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļĪāļāļīāļāļĢāļĢāļĄāļāļāļāļāļģāđāļāļāļāļąāļāļāļīāļāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļ āļāđāļ§āļĒāļ§āļīāļāļĩāđāļāđāļāļāđāļāļīāļĨāļīāđāļĄāļāļāđ āđāļāļ 3 āļĄāļīāļāļī āđāļāļĩāļĒāļāļāļąāļāļāļĨāļāļĢāļ§āļāļ§āļąāļāđāļāļŠāļāļēāļĄ
āļāļģāđāļāļāļāļąāļāļāļīāļāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļāļāļĢāļ°āļāļāļāļāđāļ§āļĒāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļāļāļĩāđāđāļāļ·āđāļāļĄāļāđāļāđāļāđāļēāļāļąāļāđāļāđāļāļāļāļąāļāļāļāļāļāļĢāļĩāļ āđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļāļāļĢāļ°āļāļāļāļāđāļ§āļĒāđāļŦāļĨāđāļāļāļēāļĄāļĒāļēāļ§āđāļĨāļ°āđāļŦāļĨāđāļāļāļēāļĄāļāļ§āļēāļ āđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāļāļēāļĄāļĒāļēāļ§āļāļģāļĄāļēāļāļēāļāđāļŦāļĨāđāļāļāđāļāļāđāļāļĒ āđāļāļāļāļ°āļāļĩāđāđāļŦāļĨāđāļāļāļēāļĄāļāļ§āļēāļāļāļģāļĄāļēāļāļēāļāđāļŦāļĨāđāļāļāļēāļāļāļķāđāļāļāļģāđāļŦāđāđāļĢāļāļāđāļēāļāļāļēāļāđāļĢāļāļāļķāļāđāļāļāļāļēāļāļŠāļđāļ āļāļģāđāļāļāļāļąāļāļāļīāļāļāļĩāđāļāļģāļāļēāļĢāļĻāļķāļāļĐāļē āļĄāļĩāļāļ§āļēāļĄāļŠāļđāļ 9.75 āđāļĄāļāļĢ āđāļĨāļ°āļāļ§āļēāļĄāļāļ§āđāļēāļ 14.80 āđāļĄāļāļĢ āļŠāļĢāđāļēāļāļāļķāđāļāļāļĩāđāđāļŦāļĄāļ·āļāļāđāļĄāđāđāļĄāļēāļ° āļāļąāļāļŦāļ§āļąāļāļĨāļģāļāļēāļ āļāļąāđāļāļāļĒāļđāđāļāļĢāļīāđāļ§āļāļāđāļēāļāļŦāļāđāļēāđāļāļīāļāļāļīāļāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāļāļąāļāļāļĢāļ°āļĄāļēāļ 48 āļāļāļĻāļē āļāļģāđāļāļāļāļąāļāļāļīāļāļāļđāļāđāļŠāļĢāļīāļĄāļāļģāļĨāļąāļāļāđāļ§āļĒāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļāļāļąāđāļ 3 āļāđāļēāļāļāļāļāļāļģāđāļāļ āļāļēāļāļ§āļīāļāļąāļĒāļāļĩāđāđāļāđāļĻāļķāļāļĐāļēāđāļāļĢāļĩāļĒāļāđāļāļĩāļĒāļāļāļĨāļāļĢāļ§āļāļ§āļąāļāļāļĢāļīāļāļāļĩāđāđāļāļīāļāļāļķāđāļāđāļāļŠāļāļēāļĄ āļāļąāļāļāļĪāļāļīāļāļĢāļĢāļĄāļāļĩāđāđāļāđāļāļēāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļ§āļĒāļ§āļīāļāļĩāđāļāđāļāļāđāļāļīāļĨāļīāđāļĄāļāļāđāđāļāļ 3 āļĄāļīāļāļī āđāļāļĒāđāļāļĢāđāļāļĢāļĄ PLAXIS 3D āļāļāļāļ§āļēāļĄāļāļĩāđāļāļģāđāļŠāļāļāļāļĪāļāļīāļāļĢāļĢāļĄāļāļāļāļāļģāđāļāļāļāļąāļāļāļīāļ āđāļ 3 āļŠāļ āļēāļ§āļ° āđāļāđāđāļāđ āļŦāļĨāļąāļāļŠāļīāđāļāļŠāļļāļāļāļēāļĢāļāđāļāļŠāļĢāđāļēāļ āļāļēāļĢāļāļīāļāļāļąāđāļāļāđāļēāđāļāļĩāļĒāļāļĢāļāļāļĢāļĢāļāļļāļÂ āđāļĨāļ°āļāļāļ°āđāļāļīāļāđāļāđāļāļēāļ āļāļķāđāļāļāļĢāļ°āļāļāļāļāđāļ§āļĒāļāļĪāļāļīāļāļĢāļĢāļĄāļāļēāļĢāļāļĢāļļāļāļāļąāļ§āđāļāđāļāļ§āļāļīāđāļāļāļāļāļāļīāļāļāļĄāļāļĩāđāļāļĢāļ§āļāļ§āļąāļāđāļāļĒ Settlement plate, āļāļēāļĢāđāļāļĨāļ·āđāļāļāļāļąāļ§āļāđāļēāļāļāđāļēāļ āļāļĢāļ§āļāļ§āļąāļāđāļāļĒ Inclinometer āđāļĨāļ°āđāļĢāļāļāļķāļāđāļāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļ āļāļĢāļ§āļāļ§āļąāļāđāļāļĒāđāļāđāđāļāļāļ§āļąāļāļāļ§āļēāļĄāđāļāļĢāļĩāļĒāļ āļāļēāļāļāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļāļāļ§āđāļē āļāļĪāļāļīāļāļĢāļĢāļĄāļāļēāļĢāļāļĢāļļāļāļāļąāļ§āđāļāļŠāļ āļēāļ§āļ°āļāđāļāļāđāļāļīāļāđāļāđāļāļēāļāļĄāļĩāļāļ§āļēāļĄāđāļāļāļāđāļēāļāļāļąāļāļĢāļ°āļŦāļ§āđāļēāļāļāļĨāļāļēāļĢāļāļĢāļ§āļāļ§āļąāļāđāļĨāļ°āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđ āđāļāđāđāļĄāļ·āđāļāļāļģāļāļēāļĢāđāļāļīāļāđāļāđāļāļēāļāđāļāđāļĨāđāļ§ (āļāļĩāđāđāļ§āļĨāļē 270 āļ§āļąāļ āļŦāļĨāļąāļāđāļĢāļīāđāļĄāļāđāļāļāđāļāļŠāļĢāđāļēāļ) āļāļēāļĢāļāļĢāļļāļāļāļąāļ§āļŠāļļāļāļāđāļēāļĒāļāļāļāļāļģāđāļāļāļāļąāļāļāļīāļāļĄāļĩāļāđāļēāđāļāļĨāđāđāļāļĩāļĒāļāļāļąāļ āđāļāļāļāļ°āļāļĩāđāļāļēāļĢāđāļāļĨāļ·āđāļāļāļāļąāļ§āļāđāļēāļāļāđāļēāļāļāļąāđāļāļŠāļāļāļāđāļēāļāļāļāļāļāļģāđāļāļāļĄāļĩāļĢāļđāļāđāļāļāđāļāļĩāļĒāļ§āļāļąāļ āļāļĨāļāļēāļĢāļāļĢāļ§āļāļ§āļąāļāļāļēāļĢāđāļāļĨāļ·āđāļāļāļāļąāļ§āļāđāļēāļāļāđāļēāļāļĄāļĩāļāđāļēāļŠāļđāļāļāļ§āđāļēāļāļĨāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđ āđāļĨāļ°āđāļĢāļāļāļķāļāļŠāļđāļāļŠāļļāļāļāļĩāđāđāļāļīāļāļāļķāđāļāđāļāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļāļāļāļāļāļąāđāļāļāļēāļĢāļāļĢāļ§āļāļ§āļąāļāđāļĨāļ°āļ§āļīāđāļāļĢāļēāļ°āļŦāđ āļĄāļĩāļāļ§āļēāļĄāđāļāļĨāđāđāļāļĩāļĒāļāļāļąāļāđāļĨāļ°āļĢāļ°āļāļēāļāđāļĢāļāļāļķāļāļŠāļđāļāļŠāļļāļāļŠāļēāļĄāļēāļĢāļāļāļĢāļ°āļĄāļēāļāđāļāđāļāđāļ§āļĒāļ§āļīāļāļĩāļāļāļ AASHTO (2002)āļāļģāđāļāļāļāļąāļāļāļīāļāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļāļāļĢāļ°āļāļāļāļāđāļ§āļĒāļāļēāļĢāđāļŠāļĢāļīāļĄāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāļāļēāļĄāļĒāļēāļ§ āļāļķāđāļāļāļģāļĄāļēāļāļēāļāđāļŦāļĨāđāļāļāđāļāļāđāļāļĒ āđāļĨāļ°āļāļļāļāļāļāļāđāļŦāļĨāđāļāļāļēāļāļāļĩāđāļāļīāļāļāļąāđāļāļāļāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāļāļēāļĄāļĒāļēāļ§āđāļāļāļīāļĻāļāļēāļāļāļĩāđāļāļąāđāļāļāļēāļāļāļąāļ āļāļģāđāļāļāļāļąāļāļāļīāļāļāļĩāđāļāļģāļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļĢāđāļēāļāļāļķāđāļāļāļĩāđāđāļŦāļĄāļ·āļāļāđāļĄāđāđāļĄāļēāļ° āļāļąāļāļŦāļ§āļąāļāļĨāļģāļāļēāļ āļāļąāđāļāļāļĒāļđāđāļāļĢāļīāđāļ§āļāļāđāļēāļāļŦāļāđāļēāđāļāļīāļāļāļīāļāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāļāļąāļāļāļĢāļ°āļĄāļēāļ 48 āļāļāļĻāļē āļāļģāđāļāļāļāļąāļāļāļīāļāļĄāļĩāļāļ§āļēāļĄāļāļ§āđāļēāļāđāļāđāļēāļāļąāļ 14.80 āđāļĄāļāļĢ āđāļĨāļ°āļĄāļĩāļāļ§āļēāļĄāļŠāļđāļāđāļāđāļēāļāļąāļ 9.75 āđāļĄāļāļĢ āđāļŠāļĢāļīāļĄāļāļģāļĨāļąāļāļāđāļ§āļĒāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļāļāļąāđāļ 3 āļāđāļēāļāļāļāļāļāļģāđāļāļ āļāļģāļāļ§āļ 14 āļāļąāđāļ āđāļāđāļĢāļ°āļĒāļ°āđāļ§āļĨāļēāļāđāļāļŠāļĢāđāļēāļāļāļąāđāļāļŠāļīāđāļ 20 āļ§āļąāļ āļāļķāđāļāļāļēāļĢāļāļģāļāļ§āļāđāļāļ·āđāļāđāļāļĢāļĩāļĒāļāđāļāļĩāļĒāļāļāļĪāļāļīāļāļĢāļĢāļĄāļāļāļāļāļģāđāļāļāļāļąāļāļāļīāļāļāđāļ§āļĒāļĢāļđāļāđāļāļ 2 āļĄāļīāļāļī āļāļēāļ āđāļĄāđāđāļŦāļĄāļēāļ°āļŠāļĄ āļāļēāļāļ§āļīāļāļąāļĒāļāļĩāđāđāļāđāļāļģāđāļāļīāļāļāļēāļĢāļĻāļķāļāļĐāļēāđāļāļĢāļĩāļĒāļāđāļāļĩāļĒāļāļāļĨāļāļĢāļ§āļāļ§āļąāļāļāļĢāļīāļāļāļĩāđāđāļāļīāļāļāļķāđāļāđāļāļŠāļāļēāļĄ āļāļąāļāļāļĪāļāļīāļāļĢāļĢāļĄāļāļĩāđāđāļāđāļāļēāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļ§āļĒāļ§āļīāļāļĩāđāļāđāļāļāđāļāļīāļĨāļīāđāļĄāļāļāđāđāļāļ 3 āļĄāļīāļāļī āđāļāļĒāđāļāļĢāđāļāļĢāļĄ PLAXIS 3D āļāļāļāļ§āļēāļĄāļāļĩāđāļāļģāđāļŠāļāļāļāļĪāļāļīāļāļĢāļĢāļĄāļāļāļāļāļģāđāļāļāļāļąāļāļāļīāļ āļāļķāđāļāļāļĢāļ°āļāļāļāļāđāļ§āļĒ āļāļēāļĢāļāļĢāļļāļāļāļąāļ§āđāļāđāļāļ§āļāļīāđāļāļāļāļāļāļīāļāļāļĄ āļāļĩāđāļāļĢāļ§āļāļ§āļąāļāđāļāļĒ Settlement plate, āļāļēāļĢāđāļāļĨāļ·āđāļāļāļāļąāļ§āļāđāļēāļāļāđāļēāļ āļāļĢāļ§āļāļ§āļąāļāđāļāļĒ Inclinometer āđāļĨāļ°āđāļĢāļāļāļķāļāđāļāđāļŦāļĨāđāļāđāļŠāļĢāļīāļĄāđāļāļāļāļēāļ āđāļāđāļāļēāļāļāļēāļĢāļāļĢāļ§āļāļ§āļąāļāđāļāļĒāđāļāđāđāļāļāļ§āļąāļāļāļ§āļēāļĄāđāļāļĢāļĩāļĒāļ āđāļ 3 āļŠāļ āļēāļ§āļ° āđāļāđāđāļāđ āļŦāļĨāļąāļāļŠāļīāđāļāļŠāļļāļāļāļēāļĢāļāđāļāļŠāļĢāđāļēāļ āļāļēāļĢāļāļīāļāļāļąāđāļāļāđāļēāđāļāļĩāļĒāļāļĢāļāļāļĢāļĢāļāļļāļÂ āđāļĨāļ°āļāļāļ°āđāļāļīāļāđāļāđāļāļē
āđāļāļĢāļ·āđāļāļāļāđāļāđāļāļāļāļģāļĨāļāļāļāļēāļĢāđāļāļĨāļĩāđāļĒāļāļāļ§āļēāļĄāļāļ·āļāļāļāļāļāļīāļ§āļāļĢāļēāļāļĢāđāļĨāļ°āļĢāļ°āļĒāļ°āļĢāđāļāļāļĨāđāļāđāļāļ·āđāļāļāļāļēāļāļāļīāļāļāļīāļāļĨāļāļāļāļāļģāļāļ§āļāļĢāļāļāļ§āļīāđāļ
Literature reported that number of accidents was directly related to pavement skid resistance. Hence, a key element to enhance road safety is to maintain skid resistance of pavement. Due to no available machine to measure pavement skid resistance under cycles of wheel track, a prototype machine for measuring pavement skid resistance and rutting under various simulated cycles of wheel track was developed This prototype machine is flexible for future modification; i.e., various factors relating to traffic load such as wheel track cycle, and wheel track load can be adjusted using a software. Results of cyclic skid and rutting tests on an asphaltic pavement specimen show that rutting and rapid deterioration in pavement skid resistance are found at first 1000 cycles of wheel track. The rate of deterioration decreases with increasing wheel track cycle
Strength of sustainable non-bearing masonry units manufactured from calcium carbide residue and fly ash
This paper aims to study the viability of using Calcium Carbide Residue (CCR) and fly ash (FA) as a cementing agent (binder) for the manufacture of non-bearing masonry units without Portland Cement (PC). CCR and FA are waste products from acetylene gas factories and power plants, respectively. The test samples were made up at a binder to stone dust ratio of 1:8 by weight. The studied water to binder (W/B) ratios were 0.50, 0.75 and 1.00, and the CCR/FA ratios were 80:20, 60:40 and 40:60. The W/B ratio of 0.75 and CCR/FA ratio of 40:60 were found to be an optimal mix proportion providing the highest both unit weight and strength. The higher CCR/FA ratios provide lower strength values because the silica and alumina in FA are insufficient to react with abundant Ca(OH)2 in the CCR for the pozzolanic reaction. The optimal mix proportion provides the strength of the CCR-FA based material greater than 20 MPa, which is acceptable for non-bearing masonry unit. The cost analysis showed that the material costs of the CCR- FA masonry unit were 40% lower than those of the PC masonry unit. Besides the cost effectiveness, the outcome of this research would divert significant quantity of CCR from landfills and considerably reduce carbon emissions due to PC production
Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer
This research investigates strength development and the carbon footprint of Calcium Carbide Residue (CCR) and Fly Ash (FA) based geopolymer stabilized marine clay. Coode Island Silt (CIS), a soft and highly compressible marine clay present in Melbourne, Australia was investigated for stabilization with the CCR and FA geopolymers. CCR is an industrial by-product obtained from acetylene gas production, high in Ca(OH)2 and was used as a green additive to improve strength of the FA based geopolymer binder. The liquid alkaline activator used was a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide (NaOH). The influential factors studied for the geopolymerization process were Na2SiO3/NaOH ratio, NaOH concentration, L/FA ratio, initial water content, FA content, CCR content, curing temperature and curing time. The strength of stabilized CIS was found to be strongly dependent upon FA content and NaOH concentration. The optimal ingredient providing the highest strength was found to be dependent on water content. Higher water contents were found to dilute the NaOH concentration, hence the optimal L/FA increases and the optimal Na2SiO3/NaOH decreases as the water content present in the clay increases. The maximum strength of the FA geopolymer (without CCR) stabilized CIS was found at Na2SiO3/NaOH = 70:30 ratio and L/FA = 1.0 for clay water content at liquid limit (LL). The role of CCR on the strength of FA geopolymer stabilized CIS can be classified into three zones: inactive, active and quasi-inert. The active zone where CCR content is between 7% and 12% is recommended in practice. The 12% CCR addition can improve up to 1.5 times the strength of the FA geopolymer. The carbon footprints of the geopolymer stabilized soils were approximately 22%, 23% and 43% lower than those of cement stabilized soil at the same strengths of 400 kPa, 600 kPa and 800 kPa. The reduction in carbon footprints at high strength indicates the effectiveness of FA geopolymer as an alternative and effective green soil stabilizer to traditional Portland cement
āļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļąāļāļāļēāļĢāļāđāļģāđāļŠāļĩāļĒāđāļĨāļ°āđāļāļ§āļāļēāļāļāļēāļĢāđāļĨāļ·āļāļāļĢāļ°āļāļāļāļģāļāļąāļāļāđāļģāđāļŠāļĩāļĒāļāļĩāđāđāļŦāļĄāļēāļ°āļŠāļĄāļāļąāļāļāļļāļĄāļāļWastewater Management and Guidelines for Choosing the Appropriate Wastewater Treatment System for the Congested Community
āļāļēāļāļ§āļīāļāļąāļĒāļāļĩāđāļāļģāđāļŠāļāļāđāļāļ§āļāļēāļāļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļąāļāļāļēāļĢāļāđāļģāđāļŠāļĩāļĒāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāđāļŦāļĄāļēāļ°āļŠāļĄāļāļąāļāļāļļāļĄāļāļāļāļĩāđāļĄāļĩāļāļ·āđāļāļāļĩāđāđāļāļāļąāļ āđāļāļĒāļāļāļāđāļāļāļāļēāļĢāļĻāļķāļāļĐāļēāļāļĒāļđāđāđāļāļāļ·āđāļāļāļĩāđāļāļāļāđāļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļŠāđāļ§āļāļāļģāļāļĨāļāļāļŦāļāļāļąāđāļāļāļ°āļ§āļąāļāļāļ āļāļģāđāļ āļāđāļĄāļ·āļāļ āļāļąāļāļŦāļ§āļąāļāļāļāļĢāļĢāļēāļāļŠāļĩāļĄāļē āļĄāļĩāļāļ·āđāļāļāļĩāđāļāļĢāļāļāļāļĨāļļāļĄ 4 āļŦāļĄāļđāđāļāđāļēāļ āđāļĨāļ°āđāļāđāļāļāļ·āđāļāļāļĩāđāļāļĩāđāļĄāļĩāļāļąāļāļŦāļēāđāļāļāļēāļĢāļāļąāļāļāļēāļĢāļĢāļ°āļāļāļĢāļ§āļāļĢāļ§āļĄāđāļĨāļ°āļĢāļ°āļāļāļāļģāļāļąāļāļāđāļģāđāļŠāļĩāļĒ āļāļģāđāļŦāđāđāļāļīāļāļāļąāļāļŦāļēāļāđāļģāļāđāļ§āļĄāļāļąāļāđāļ§āļĨāļēāļāļāļāļ āļāļēāļāļ§āļīāļāļąāļĒāļāļĩāđāđāļāđāļĻāļķāļāļĐāļēāļĢāļ°āļāļāļĢāļ§āļāļĢāļ§āļĄāđāļĨāļ°āļĢāļ°āļāļāļāļģāļāļąāļāļāđāļģāđāļŠāļĩāļĒāđāļŦāđāđāļŦāļĄāļēāļ°āļŠāļĄāļāļąāļāļāļļāļĄāļāļāļāļģāļāļĨāļāļāļŦāļāļāļąāđāļāļāļ°āļ§āļąāļāļāļ āđāļāļĒāļĄāļĩāļāļąāđāļāļāļāļāļāļēāļĢāļāļģāļāļēāļ āļāļĢāļ°āļāļāļāļāđāļ§āļĒ 1) āļāļēāļĢāļŠāļģāļĢāļ§āļāđāļĨāļ°āļāļąāļāļāļģāđāļāļāđāļāļāļāļĩāđāļĢāļ°āļāļąāļāļāđāļāđāļĨāļ°āļĢāļēāļāļĢāļ°āļāļēāļĒāļāđāļģ āđāļĨāļ° 2) āļāļēāļĢāļāļĢāļ§āļāļŠāļāļāļāļĢāļīāļĄāļēāļāđāļĨāļ°āļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļļāļāļ āļēāļāļāđāļģāđāļŠāļĩāļĒāļāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļāļāļ§āđāļē āļāļģāļāļĨāļāļāļŦāļāļāļąāđāļāļāļ°āļ§āļąāļāļāļāļāļ§āļĢāļĄāļĩāļāđāļāļĢāļ°āļāļēāļĒāļāđāļģāļŦāļĨāļąāļāļāļąāđāļāļŠāļāļāļāđāļēāļāļāļāļāļĢāļąāļāļāļāļīāļāļēāļ āđāļāļĒāđāļāđāļāđāļāļāļāļēāļāđāļŠāđāļāļāđāļēāļāļĻāļđāļāļĒāđāļāļĨāļēāļ 1.00 āđāļĄāļāļĢ āđāļāļ·āđāļāđāļŦāđāļāļēāļĢāļĢāļ°āļāļēāļĒāļāđāļģāļĄāļĩāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļĨāļ°āļĨāļāļāļąāļāļŦāļēāļāļēāļĢāļāđāļ§āļĄāļāļąāļāļāļāļāļāđāļģāļāļīāļ§āļāļīāļ āļāļāļāļāļēāļāļāļĩāđ āļāļ§āļĢāļŠāļĢāđāļēāļāļāļ·āđāļāļāļĩāđāļĢāļąāļāļāđāļģāđāļāļ·āđāļāđāļāđāļāļāļļāļāļŦāļāđāļ§āļāļāđāļģāļāđāļāļāļāļĩāđāļāļ°āļĢāļ°āļāļēāļĒāđāļāđāļēāļŠāļđāđāđāļāļĢāļāļāđāļēāļĒāļĢāļ°āļāļēāļĒāļāđāļģāđāļĨāļ°āļŠāđāļāđāļāļĒāļąāļāļāļļāļāļĢāļąāļāļāđāļģāļāļēāļĄāļāļĨāļāļāļāļĨāļāļĢāļ°āļāļēāļāđāļĨāļ°āļāļĨāļāļāļāļĢāļĢāļĄāļāļēāļāļī āļāļĨāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļļāļāļ āļēāļāļāđāļģāđāļŠāļĩāļĒāļāļąāđāļ 4 āļŦāļĄāļđāđāļāđāļēāļ āļāļāļāļĢāļīāļĄāļēāļāļŠāļēāļĢāļāļāđāļāļ·āđāļāļāđāļāļāđāļģāļŠāļđāļāļĄāļēāļāļāļ§āđāļēāđāļāļāļāđāļāļāļāļĄāļēāļāļĢāļāļēāļāļāđāļģāļāļīāļ§āļāļīāļ āļāļēāļĄāļāļĢāļ°āļĢāļēāļāļāļąāļāļāļąāļāļīāļŠāđāļāđāļŠāļĢāļīāļĄāđāļĨāļ°āļĢāļąāļāļĐāļēāļāļļāļāļ āļēāļāļŠāļīāđāļāđāļ§āļāļĨāđāļāļĄāđāļŦāđāļāļāļēāļāļī āļ.āļĻ. 2535 āļĄāļēāļāļĢāļē 32 āļĢāļ°āļāļąāļāļāļēāļĢāļāļāđāļāļ·āđāļāļāļāļąāļāļāļĒāļđāđāđāļāđāļāļāļāđāļāļĢāļ°āđāļ āļāļāļĩāđ 5 āļāļķāđāļāļāļģāđāļāđāļāļāļ°āļāđāļāļāđāļāđāļĢāļąāļāļāļēāļĢāļāļ·āđāļāļāļđāļāļļāļāļ āļēāļāļāļāļāļāđāļģāļāļĒāđāļēāļāđāļĢāđāļāļāđāļ§āļ āļ§āļīāļāļĩāļāļēāļĢāļāļąāļāļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāđāļģāđāļŠāļĩāļĒāļāļĩāđāđāļŦāļĄāļēāļ°āļŠāļĄāļāļąāļāļāļ·āđāļāļāļĩāđāļ§āļīāļāļąāļĒāļāļ·āļ āļāļēāļĢāđāļĨāļ·āļāļāđāļāđāļĢāļ°āļāļāļāļģāļāļąāļāļāđāļģāđāļŠāļĩāļĒāđāļāļāļāđāļāļāļĢāļąāļāđāļŠāļāļĩāļĒāļĢ āđāļāļĢāļēāļ°āđāļāđāļāļĢāļ°āļāļāļāļĩāđāļĄāļĩāļāđāļēāļāļēāļĢāļāđāļāļŠāļĢāđāļēāļāđāļĨāļ°āļāđāļēāļāļđāđāļĨāļĢāļąāļāļĐāļēāļāđāļģ āļĢāļ§āļĄāļāļąāđāļāļĄāļĩāļ§āļīāļāļĩāļāļēāļĢāđāļāļīāļāļĢāļ°āļāļāđāļĄāđāļĒāļļāđāļāļĒāļēāļāļāļąāļāļāđāļāļThis research presents a wastewater management approach that is appropriate for communities with congested areas. Four villages in the Western Region of Joho Subdistrict Administrative Organization, Nakhon Ratchasima Province, Thailand, encounter problems with wastewater collection and treatment management. Due to an insufficient drainage system, the heavy precipitation in the surrounding area causes the pain of waterlogging with untreated wastewater. This research aims to study and reform the wastewater collection and treatment system by conducting 1) a topographic survey and mapping of existing drainage pipes and gutters, and 2) a test and analysis of the quantity and quality of wastewater. The analysis revealed that two main pipes with a diameter of 1.00 m should be installed on each side of the Rattanaphithan Road to drain the water. In addition, the water catchment should be built efficiently as a watershed before the drainage system along the irrigation canals and natural canals. The wastewater quality from all four villages was found to have a high content of contaminants when compared with standard criteria for surface water in accordance with the Enhancement and Conservation of National Environmental Quality Act, B.E. 2535, Section 32. This high-water contamination was classified in category 5, which requires urgent water quality restoration. The appropriate management approach for this study site is a stabilization pond for wastewater treatment because its construction and maintenance costs are low, and the operating system is not complicated
Unit weight, strength and microstructure of a water treatment sludge-fly ash lightweight cellular geopolymer
A water treatment sludge–fly ash lightweight cellular geopolymer (WTS–FA LCG) is investigated in this research with the intention to develop an alternative green construction and building material, without using Portland cement as a cementing agent. Two waste by-products: WTS from the Bang Khen water treatment plants of the Metropolitan Water Work Authority of Thailand (MWA) and FA from the Mae Moh power plants of the Electricity Generating Authority of Thailand (EGAT) were used as an aggregate and a precursor, respectively. The liquid alkaline activator (L) used was a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH). The unit weight and strength of WTS–FA LCG heated at 65 °C for various influential factors are investigated and presented in this paper. The various influential factors studied include mixing ingredient (air content (Ac), liquid alkaline activator content (L) and Na2SiO3/NaOH), heat duration and curing time. Scanning electron microscopy (SEM) analysis was undertaken to investigate the role of influential factors on unit weight and strength. The test results indicate that the L content at liquid limit state (LL) is optimal for manufacturing WTS–FA LCG for all Na2SiO3/NaOH ratios, heat durations and air contents tested for which the highest strength is attained. Although the unit weight of WTS–FA LCG significantly reduces when L > LL, it is not economical to manufacture WTS–FA LCG at L > LL due to the drastic strength reduction. The addition of Ac at L = LL is found to be an appropriate means to reduce the unit weight and minimize the strength reduction. The maximum strengths at L = LL for various air contents are found at Na2SiO3/NaOH of 80:20 and heat duration of 72 h. The longer heat durations of 96 and 120 h cause the loss of moisture, thereby resulting in micro-cracks and strength reduction. The WTS was found to be viable alternative aggregate to develop WTS–FA LCG, thereby resulting in this waste material traditionally destined for landfills to be used sustainably as a valuable resource
Generalized Interface Shear Strength Equation for Recycled Materials Reinforced with Geogrids
In this research, large direct shear tests were conducted to evaluate the interface shear strength between reclaimed asphalt pavement (RAP) and kenaf geogrid (RAPâgeogrid) and to also assess their viability as an environmentally friendly base course material. The influence of factors such as the gradation of RAP particles and aperture sizes of geogrid (D) on interface shear strength of the RAPâgeogrid interface was evaluated under different normal stresses. A critical analysis was conducted on the present and previous test data on geogrids reinforced recycled materials. The D/FD, in which FD is the recycled materialsâ particle content finer than the aperture of geogrid, was proposed as a prime parameter governing the interface shear strength. A generalized equation was proposed for predicting the interface shear strength of the form: Îą = a(D/FD) + b, where Îą is the interface shear strength coefficient, which is the ratio of the interface shear strength to the shear strength of recycled material, and a and b are constants. The constant values of a and b were found to be dependent upon types of recycled material, irrespective of types of geogrids. A stepwise procedure to determine variable a, which is required for analysis and design of geogrids reinforced recycled materials in roads with various gradations was also suggested