41 research outputs found

    A positron emission tomography imaging study to confirm target engagement in the lungs of patients with idiopathic pulmonary fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor

    Get PDF
    © 2020 The Author(s). Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with poor prognosis and a significant unmet medical need. This study evaluated the safety, pharmacokinetics (PK) and target engagement in the lungs, of GSK3008348, a novel inhaled alpha-v beta-6 (αvβ6) integrin inhibitor, in participants with IPF. Methods: This was a phase 1b, randomised, double-blind (sponsor unblind) study, conducted in the UK (two clinical sites, one imaging unit) between June 2017 and July 2018 (NCT03069989). Participants with a definite or probable diagnosis of IPF received a single nebulised dose of 1000 mcg GSK3008348 or placebo (ratio 5:2) in two dosing periods. In period 1, safety and PK assessments were performed up to 24 h post-dose; in period 2, after a 7-day to 28-day washout, participants underwent a total of three positron emission tomography (PET) scans: Baseline, Day 1 (~ 30 min post-dosing) and Day 2 (~ 24 h post-dosing), using a radiolabelled αvβ6-specific ligand, [18F]FB-A20FMDV2. The primary endpoint was whole lung volume of distribution (VT), not corrected for air volume, at ~ 30 min post-dose compared with pre-dose. The study success criterion, determined using Bayesian analysis, was a posterior probability (true % reduction in VT > 0%) of ≥80%. Results: Eight participants with IPF were enrolled and seven completed the study. Adjusted posterior median reduction in uncorrected VT at ~ 30 min after GSK3008348 inhalation was 20% (95% CrI:-9 to 42%). The posterior probability that the true % reduction in VT > 0% was 93%. GSK3008348 was well tolerated with no reports of serious adverse events or clinically significant abnormalities that were attributable to study treatment. PK was successfully characterised showing rapid absorption followed by a multiphasic elimination. Conclusions: This study demonstrated engagement of the αvβ6 integrin target in the lung following nebulised dosing with GSK3008348 to participants with IPF. To the best of our knowledge this is the first time a target-specific PET radioligand has been used to assess target engagement in the lung, not least for an inhaled drug. Trial registration: Clinicaltrials.gov: NCT03069989; date of registration: 3 March 2017

    Heterogeneous shedding of influenza by human subjects and its implications for epidemiology and control

    Get PDF
    International audienceHeterogeneity of infectiousness is an important feature of the spread of many infections, with implications for disease dynamics and control, but its relevance to human influenza virus is still unclear. For a transmission event to occur, an infected individual needs to release infectious particles via respiratory symptoms. Key factors to take into account are virus dynamics, particle release in relation to respiratory symptoms, the amount of virus shed and, importantly, how these vary between infected individuals. A quantitative understanding of the process of influenza transmission is relevant to designing effective mitigation measures. Here we develop an influenza infection dynamics model fitted to virological, systemic and respiratory symptoms to investigate how within-host dynamics relates to infectiousness. We show that influenza virus shedding is highly heterogeneous between subjects. From analysis of data on experimental infections, we find that a small proportion (<20%) of influenza infected individuals are responsible for the production of 95% of infectious particles. Our work supports targeting mitigation measures at most infectious subjects to efficiently reduce transmission. The effectiveness of public health interventions targeted at highly infectious individuals would depend on accurate identification of these subjects and on how quickly control measures can be applied

    Illustrations of Some Lycopodium Gametophytes

    No full text
    Volume: 32Start Page: 1End Page: 1

    Morphology of Vascular Plant L Lower Groups

    No full text
    xviii,433 hal,;ill,;20 c

    An introduction to plant anatomy

    No full text
    xvii+427hlm.;21c

    An introduction to plant anatomy

    No full text
    xvii 397 hal.;ill.;26 cm

    An introduction to plant anatomy

    No full text
    xvii, 427 p.; 21 cm

    An Introduction to Plant Anatomy

    No full text
    xvii;ill.;427hal.;20c
    corecore